Quiz 2, September 1, 2016

The quiz is worth 5 points. Remove EVERYTHING from your desk except this quiz and a pen or pencil. Express your work in a coherent and correct manner. BOX your answer. Solve

$$
y^{3} \frac{d y}{d x}=\left(y^{4}+1\right) \cos x
$$

Express your answer in the form $y=y(x)$. Check your answer.
ANSWER: Multiply both sides by $d x$; divide both sides by $y^{4}+1$; integrate both sides:

$$
\begin{gathered}
\int \frac{y^{3}}{y^{4}+1} d y=\int \cos x d x \\
\frac{1}{4} \ln \left(y^{4}+1\right)=\sin x+C \\
\ln \left(y^{4}+1\right)=4 \sin x+4 C \\
y^{4}+1=e^{4 C} e^{4 \sin x} \\
y^{4}=e^{4 C} e^{4 \sin x}-1 \\
y= \pm\left(K e^{4 \sin x}-1\right)^{1 / 4}
\end{gathered}
$$

where $K=e^{4 C}$.
CHECK: We compute

$$
\frac{d y}{d x}= \pm \frac{1}{4}\left(K e^{4 \sin x}-1\right)^{-3 / 4} K e^{4 \sin x} 4 \cos x
$$

Thus, the left side of the Differential Equation is equal to

$$
y^{3} \frac{d y}{d x}=\left(\pm\left(K e^{4 \sin x}-1\right)^{3 / 4}\right)\left(\pm \frac{1}{4}\left(K e^{4 \sin x}-1\right)^{-3 / 4} K e^{4 \sin x} 4 \cos x\right)=K e^{4 \sin x} 4 \cos x
$$

On the other hand, the right side of the differential equation is $\left(y^{4}+1\right) \cos x=\left[\left(\pm\left(K e^{4 \sin x}-1\right)^{1 / 4}\right)^{4}+1\right] \cos x=\left[\left(K e^{4 \sin x}-1\right)+1\right] \cos x=K e^{4 \sin x} \cos x$.
The two sides are equal. We have solved the Differential Equation.

