PRINT Your Name: \qquad
Quiz 10, Fall, 2012
Each quiz is worth 5 points. Remove EVERYTHING from your desk except this quiz and a pen or pencil. SHOW your work. Express your work in a neat and coherent manner.

Use the method of Laplace transforms to solve the Initial Value Problem

$$
x^{\prime \prime}+x=\cos 3 t, \quad x(0)=1, x^{\prime}(0)=0 .
$$

Answer. Let $X=\mathcal{L}(x)$. We have $\mathcal{L}\left(x^{\prime}\right)=s \mathcal{L}(x)-x(0)=s X-1$, $\mathcal{L}\left(x^{\prime \prime}\right)=s \mathcal{L}\left(x^{\prime}\right)-x^{\prime}(0)=s^{2} X-s$, and $\mathcal{L}(\cos 3 t)=\frac{s}{s^{2}+9}$. Transform the given IVP to

$$
s^{2} X-s+X=\frac{s}{s^{2}+9}
$$

We solve for X :

$$
\begin{gathered}
\left(s^{2}+1\right) X=\frac{s}{s^{2}+9}+s \\
X=\frac{s}{\left(s^{2}+1\right)\left(s^{2}+9\right)}+\frac{s}{s^{2}+1}
\end{gathered}
$$

Apply the technique of partial fractions to get

$$
\begin{gathered}
X=\frac{1}{8}\left[\frac{1}{s^{2}+1}-\frac{1}{s^{2}+9}\right]+\frac{s}{s^{2}+1} \\
X=\frac{1}{8}\left[9 \frac{1}{s^{2}+1}-\frac{1}{s^{2}+9}\right]
\end{gathered}
$$

Apply the inverse Laplace Transform:

$$
x=\mathcal{L}^{-1}(X)=\mathcal{L}^{-1}\left(\frac{1}{8}\left[9 \frac{1}{s^{2}+1}-\frac{1}{s^{2}+9}\right]\right)=\frac{1}{8}[9 \cos t-\cos 3 t] .
$$

Our answer is

$$
x(t)=\frac{1}{8}[9 \cos t-\cos 3 t] .
$$

