PRINT Your Name: \qquad
Quiz 1, Spring, 2013
The quiz is worth 5 points. Remove EVERYTHING from your desk except this quiz and a pen or pencil. SHOW your work. Express your work in a neat and coherent manner. BOX your answer. The solution will be posted later today.
Suppose the velocity of a motorboat coasting in water satisfies the differential equation $\frac{d v}{d t}=k v^{2}$. The initial speed of the motorboat is $v(0)=10$ meters per second $(\mathrm{m} / \mathrm{s})$, and v is decreasing at the rate $1 \mathrm{~m} / \mathrm{s}^{2}$ when $v=5 \mathrm{~m} / \mathrm{s}$. How long does it take for the velocity of the boat to decrease to $1 \mathrm{~m} / \mathrm{s}$?

ANSWER: We separate the variables and integrate to see that $\int \frac{d v}{v^{2}}=\int k d t$; so, $-1 / v=k t+C$. Plug in $t=0$ to learn that $-1 / 10=C$. Let t_{1} be the time when $v=5$. We are told that at time t_{1}, we have $\frac{d v}{d t}\left(t_{1}\right)=-1$. Plug t_{1} into $\frac{d v}{d t}=k v^{2}$ to learn:

$$
-1=\frac{d v}{d t}\left(t_{1}\right)=k v\left(t_{1}\right)^{2}=k(25) .
$$

So, $k=-1 / 25$. Thus,

$$
v=\frac{-1}{k t+C}=\frac{-1}{\frac{-1}{25} t+\frac{-1}{10}}
$$

Multiply top and bottom by -50 to get

$$
v=\frac{50}{2 t+5}
$$

We find the time t_{2}, when $v\left(t_{2}\right)=1$:

$$
\begin{gathered}
1=\frac{50}{2 t_{2}+5} \\
2 t_{2}+5=50 \\
2 t_{2}=45 \\
t_{2}=22.5 \text { seconds }
\end{gathered}
$$

