\qquad
No calculators, cell phones, computers, notes, etc.
Circle your answer. Make your work correct, complete and coherent.
Please take a picture of your quiz (for your records) just before you turn the quiz in. I will e-mail your grade and my comments to you.

The quiz is worth 5 points. The solutions will be posted on my website later today.

Quiz 1, January 17, 2024

Substitute $y=e^{r x}$ into the Differential Equation $3 y^{\prime \prime}+3 y^{\prime}-4 y=0$ to determine all values of the constant r for which $y=e^{r x}$ is a solution of the Differential Equation.

Answer: We calculate $y^{\prime}=r e^{r x}$ and $y^{\prime \prime}=r^{2} e^{r x}$. When we put y, y^{\prime}, and $y^{\prime \prime}$ into the differential equation we obtain

$$
3 r^{2} e^{r x}+3 r e^{r x}-4 e^{r x}=0
$$

Factor to obtain

$$
e^{r x}\left(3 r^{2}+3 r-4\right)=0
$$

If a product is equal to zero, then one of the factors must be zero. The factor $e^{r x}$ is never zero; so, $3 r^{2}+3 r-4=0$. We use the quadratic formula: If $a x^{2}+b x+c=0$, then

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

In our problem, $a=3, b=3$, and $c=-4$; Thus,

$$
r=\frac{-3 \pm \sqrt{9-4(3)(-4)}}{2(3)}
$$

In other words,

$$
r=\frac{-3 \pm \sqrt{57}}{6}
$$

