Please PRINT your name \qquad
The quiz is worth 5 points. Please make your work coherent, complete, and correct. Please CIRCLE your answer. Please CHECK your answer whenever possible.

The solution will be posted later today.

No Calculators, computers, smart phones, notes, etc.

Quiz 1, January 23, 2018

Find a function $y=f(x)$ which solves the differential equation with the prescribed initial condition:

$$
\frac{d y}{d x}=x e^{-x} \quad \text { and } \quad y(0)=1 .
$$

Answer: We compute

$$
y=\int \frac{d y}{d x} d x=\int x e^{-x} d x
$$

Use integration by parts. Let $u=x$ and $d v=e^{-x} d x$. Compute $d u=d x$ and $v=-e^{-x}$. The integration by parts formula is

$$
\int u d v=u v-\int v d u
$$

Thus,

$$
y=-x e^{-x}+\int e^{-x} d x=-x e^{-x}-e^{-x}+C
$$

We check this much before going further:

$$
\frac{d y}{d x}=x e^{-x}-e^{-x}+e^{-x}=x e^{-x}
$$

as expected. Now we evaluate the constant:

$$
1=y(0)=-1+C .
$$

So $C=2$ and $y=-x e^{-x}-e^{-x}+2$.

