Quiz 1, January 17, 2017, 1:15 class

Suppose a population P of rodents satisfies the differential equation $\frac{d P}{d t}=k P^{2}$. Initially, there are $P(0)=2$ rodents, and their number is increasing at the rate of $\frac{d P}{d t}=1$ rodent per month when there are $P=10$ rodents. How long will it take for this population to grow to a hundred rodents? To a thousand? What is happening here?
ANSWER: We can find k right away. On the one hand, $\frac{d P}{d t}=k P^{2}$. On the other hand, when $P=10, \frac{d P}{d t}=1$. So $1=\left.\frac{d P}{d t}\right|_{P=10}=k(10)^{2}$. We see that $\frac{1}{100}=k$. Now we solve the differential equation:
$\frac{d P}{d t}=\frac{1}{100} P^{2}$. Separate the variables $d P / P^{2}=(1 / 100) d t$. Integrate both sides:
$-1 / P=(1 / 100) t+C$. Plug in $t=0$ to learn: $-1 / 2=C$. We have found
$-1 / P=(1 / 100) t-(1 / 2)$. Multiply both sides by -100 to get $100 / P=-t+50$ or

$$
\frac{100}{50-t}=P(t) \text {. }
$$

We find t with $P(t)=100$. So, $\frac{100}{50-t}=100$ or $1=50-t$ that is $t=49$.
The rodent population hits 100 at t equal to 49 months.
We find t with $P(t)=1000$. So, $\frac{100}{50-t}=1000$ or $\frac{1}{10}=50-t$ that is $t=50-\frac{1}{10}$.

$$
\text { The rodent population hits } 100 \text { at } t \text { equal to } 50-\frac{1}{10} \text { months. }
$$

We see that

$$
\lim _{t \rightarrow 50^{-}} P(t)=\lim _{t \rightarrow \rightarrow 50^{-}} \frac{100}{50-t}=+\infty
$$

The rodent population heads to infinity as t goes to 50 months.

