Quiz 1, January 17, 2017, 11:40 class

On planet Gzyx, a ball dropped from a height of 20 ft hits the ground in 2 seconds. If a ball is dropped from the top of a 200-ft-tall building on Gzyx, how long will it take to hit the ground? With what speed will it hit? Please assume that acceleration is constant. I expect you to state and solve an Initial Value Problem.
ANSWER: Let $x(t)$ be the height of the ball above the ground at time t. Measure t in seconds and x in feet. We assume that $x^{\prime \prime}(t)=-k$ for some positive constant k. For the first event, we have $x(0)=20, x^{\prime}(0)=0$, and $x(2)=0$. For the second event, we have $x(0)=200$ and $x^{\prime}(0)=0$. We want to find t_{1} with $x\left(t_{1}\right)=0$. We also want to find $x^{\prime}\left(t_{1}\right)$.

We first think about the first event. Integrate to learn $x^{\prime}(t)=-k t+C_{1}$. Plug in $x^{\prime}(0)=0$ to learn that $C_{1}=0$. Integrate again to learn $x(t)=-k t^{2} / 2+C_{2}$. Plug in $x(0)=20$ to learn $C_{2}=20$. So, $x(t)=-k t^{2} / 2+20$. Plug in $x(2)=0$ to learn $k=10$.

Now turn to the second event. Integrate twice and evaluate the constants to learn that $x^{\prime}(t)=-k t$ and $x(t)=-k t^{2} / 2+200$; with $k=10$; so, $x(t)=-5 t^{2}+200$. Solve $0=x\left(t_{1}\right)=$ $-5 t^{2}+200$ to learn that $t_{1}=\sqrt{40}=2 \sqrt{10}$ and $x^{\prime}\left(t_{1}\right)=-10 t_{1}=-20 \sqrt{10}$.

It takes the second ball $2 \sqrt{10}$ seconds to hit the ground. The ball is traveling downward at the speed $20 \sqrt{10}$ feet per second when it hits the ground.

