PRINT Your Name: \qquad
Quiz 9 on March 22, 2012
Each quiz is worth 5 points. Remove EVERYTHING from your desk except this quiz and a pen or pencil. SHOW your work. Express your work in a neat and coherent manner.

Solve the Initial Value Problem

$$
x^{\prime \prime}+10 x^{\prime}+125 x=0, \quad x(0)=6, x^{\prime}(0)=50 .
$$

If possible, put your answer in the form $x(t)=C_{1} e^{-p t} \cos \left(\omega_{1} t-\alpha_{1}\right)$.
Answer. We try $x=e^{r t}$. We immediately are faced with solving the characteristic equation:

$$
r^{2}+10 r+125=0
$$

So, $r=\frac{-10 \pm \sqrt{100-500}}{2}=\frac{-10 \pm 20 i}{2}=-5 \pm 10 i$. So $x=c_{1} e^{-5 t} \cos 10 t+c_{2} e^{-5 t} \sin 10 t$ is the general solution of the differential equation. We now plug in the Initial Conditions to determine the values of c_{1} and c_{2}. We calculate

$$
x^{\prime}=e^{-5 t}\left(-10 c_{1} \sin 10 t-5 c_{1} \cos 10 t+10 c_{2} \cos 10 t-5 c_{2} \sin 10 t\right)
$$

We have $6=x(0)=c_{1}$ and $50=x^{\prime}(0)=-5 c_{1}+10 c_{2} ;$ so, $c_{1}=6$ and $c_{2}=8$. The solution is

$$
x(t)=e^{-5 t}(6 \cos 10 t+8 \sin 10 t)=10 e^{-5 t}\left(\frac{6}{10} \cos 10 t+\frac{8}{10} \sin 10 t\right)
$$

We have arranged the numbers so that $\left(\frac{6}{10}, \frac{8}{10}\right)$ is a point on the unit circle. Let $\alpha=\arccos \left(\frac{6}{10}\right)$. It follows that $\sin \alpha=\frac{8}{10}$. We have
$x(t)=10 e^{-5 t}(\cos \alpha \cos 10 t+\sin \alpha \sin 10 t)=10 e^{-5 t} \cos (\alpha-10 t)=10 e^{-5 t} \cos (10 t-\alpha)$.
Our answer is

$$
x(t)=10 e^{-5 t} \cos (10 t-\alpha), \text { where } \alpha=\arccos \left(\frac{3}{5}\right) .
$$

