PRINT Your Name: \qquad
Quiz for May 30, 2012
The quiz is worth 5 points. Remove EVERYTHING from your desk except this quiz and a pen or pencil. SHOW your work. Express your work in a neat and coherent manner. BOX your answer.

Solve $\left(1-x^{2}\right) \frac{d y}{d x}=2 y$. Express your answer in the form $y=y(x)$. Check your answer.
ANSWER: Separate the variables to get $\frac{d y}{y}=\frac{2}{1-x^{2}} d x$. Integrate both sides:

$$
\int \frac{d y}{y}=\int \frac{2}{1-x^{2}} d x
$$

Use the method of partial fractions:

$$
\begin{gathered}
\int \frac{d y}{y}=\int\left(\frac{1}{1-x}+\frac{1}{1+x}\right) d x \\
\ln |y|=-\ln |1-x|+\ln |1+x|+C .
\end{gathered}
$$

Exponentiate:

$$
\begin{gathered}
e^{\ln |y|}=e^{-\ln |1-x|+\ln |1+x|+C} \\
|y|=e^{C} \frac{|1+x|}{|1-x|} \\
y= \pm e^{C} \frac{1+x}{1-x} \\
y=K \frac{1+x}{1-x},
\end{gathered}
$$

where $K= \pm e^{C}$.
Check. We take the derivative of the proposed answer

$$
\frac{d y}{d x}=K \frac{(1-x)-(1+x)(-1)}{(1-x)^{2}}=K \frac{2}{(1-x)^{2}} .
$$

Plug $\frac{d y}{d x}$ into the left side of the DE to get

$$
K\left(1-x^{2}\right) \frac{d y}{d x}=K\left(1-x^{2}\right) \frac{2}{(1-x)^{2}}=K \frac{2(1+x)}{1-x}=2 y . \checkmark
$$

