Math 242, Exam 3, Summer 2012
Write everything on the blank paper provided. You should KEEP this piece of paper. If possible: turn the problems in order (use as much paper as necessary), use only one side of each piece of paper, and leave 1 square inch in the upper left hand corner for the staple. If you forget some of these requests, don't worry about it - I will still grade your exam.
The exam is worth 50 points. There are 6 problems. SHOW your work. CIRCLE your answer. CHECK your answer whenever possible.

## No Calculators or Cell phones.

1. (7 points) Solve $y^{\prime \prime}+2 y^{\prime}-3 y=e^{x}$. Express your answer in the form $y(x)$.
First we solve the homogeneous problem $y^{\prime \prime}+2 y^{\prime}-3 y=0$. We try $y=e^{r x}$ and solve $0=r^{2}+2 r-3=(r-1)(r+3)$. The general solution of the homogeneous equation $y^{\prime \prime}+2 y^{\prime}-3 y=0$ is $c_{1} e^{x}+c_{2} e^{-3 x}$. Now we find a particular solution of the given non-homogeneous problem. We try $y=A x e^{x}$. We compute $y^{\prime}=e^{x}(A x+A)$ and $y^{\prime \prime}=e^{x}(A x+2 A)$. Plug our candidate into the original DE to obtain:

$$
e^{x}=e^{x}(A x+2 A)+2 e^{x}(A x+A)-3 A x e^{x}=4 A e^{x} .
$$

Take $A=1 / 4$. The general solution of the given DE is

$$
y=c_{1} e^{x}+c_{2} e^{-3 x}+\frac{1}{4} x e^{x}
$$

2. (7 points) Solve $y^{\prime \prime \prime}-5 y^{\prime \prime}+8 y^{\prime}-4 y=0$. Express your answer in the form $y(x)$.

Try $y=e^{r x}$. We see that

$$
0=r^{3}-5 r^{2}+8 r-4=(r-1)\left(r^{2}-4 r+4\right)=(r-1)(r-2)^{2} .
$$

The solution of the DE is

$$
y=c_{1} e^{x}+c_{2} e^{2 x}+c_{3} x e^{2 x} .
$$

3. (6 points) Solve $y^{\prime \prime}+y^{\prime}+y=0$. Express your answer in the form $y(x)$.

Try $y=e^{r x}$. We see that $r^{2}+r+1=0$. Thus $r=\frac{-1 \pm \sqrt{1-4}}{2}=\frac{-1 \pm i \sqrt{3}}{2}$. The solution of the DE is

$$
y=e^{-x / 2}\left(c_{1} \cos \left(\frac{\sqrt{3} x}{2}\right)+c_{2} \sin \left(\frac{\sqrt{3} x}{2}\right)\right) .
$$

4. (6 points) Suppose that a body moves through a resisting medium with resistance proportional to its velocity $v(t)$, so that $\frac{d v}{d t}=-k v$ for some positive constant $k$. Let $x(t)$ be the position of the object at time $t$. Let $v(0)=v_{0}$ and $x(0)=x_{0}$. Find the velocity and position of the object at time $t$. Find $\lim _{t \rightarrow \infty} x(t)$.

Seperate the variables and integrate to see that

$$
\begin{gathered}
\frac{d v}{v}=-k d t \\
\ln |v|=-k t+C \\
v= \pm e^{C} e^{-k t}
\end{gathered}
$$

Let $K$ be the constant $\pm e^{C}$. We have

$$
v(t)=K e^{-k t}
$$

Plug in $t=0$ to see that $v(t)=v_{0} e^{-k t}$. Seperate the variables and integrate to see that

$$
\begin{gathered}
\frac{d x}{d t}=v_{0} e^{-k t} \\
d x=v_{0} e^{-k t} d t \\
x=\frac{v_{0}}{-k} e^{-k t}+C_{2}
\end{gathered}
$$

Plug in $t=0$ to see that

$$
x_{0}=x(0)=\frac{v_{0}}{-k}+C_{2}
$$

so $x_{0}+\frac{v_{0}}{k}=C_{2}$ and

$$
x(t)=\frac{v_{0}}{-k} e^{-k t}+x_{0}+\frac{v_{0}}{k} .
$$

We compute

$$
\lim _{t \rightarrow \infty} x(t)=\lim _{t \rightarrow \infty} \frac{v_{0}}{-k} e^{-k t}+x_{0}+\frac{v_{0}}{k}=x_{0}+\frac{v_{0}}{k} .
$$

5. (6 points) Consider a population $P(t)$ which satisfies the Differential

## Equation

$$
\begin{equation*}
\frac{d P}{d t}=a P^{2}-b P \tag{1}
\end{equation*}
$$

where $a$ and $b$ are positive constants. Let $B(t)=a P(t)^{2}$ and $D(t)=b P(t)$. Call $B(t)$ the birth rate at time $t$ and $D(t)$ the death rate at time $t$. When we first thought about population models we learned that $P(t)=0$ and $P(t)=M$ are equilibrium solutions for the Differential Equation

$$
\begin{equation*}
\frac{d P}{d t}=k P(P-M) \tag{2}
\end{equation*}
$$

where $k$ and $M$ are positive constants. We also learned that the solution of (2) is

$$
P(t)=\frac{M P(0)}{P(0)+(M-P(0)) e^{k M t}} .
$$

(a) Express the " $M$ " of (2) in terms of the data $B(0), D(0)$, and $P(0)$ from (1).

First we do (a). We write (1) in the form $\frac{d P}{d t}=a P\left(P-\frac{b}{a}\right)$. We now see that $M=\frac{b}{a}$. On the other hand, when we put $t=0$ into the equations $B(t)=a P(t)^{2}$ and $D(t)=b P(t)$, we learn that the constants $a$ and $b$ are $\frac{B(0)}{P(0)^{2}}=a$ and $\frac{D(0)}{P(0)}=b$; and therefore,

$$
M=\frac{b}{a}=\frac{\frac{D(0)}{P(0)}}{\frac{B(0)}{P(0)^{2}}}=\frac{D(0) P(0)}{B(0)} .
$$

(b) Suppose that some population is modeled by (1) and that the initial population is 100 and there are 10 births per month and 9 deaths per month occurring at $t=0$. How many months does it take until $P(t)$ reaches 10 times the threshold population $M$ ?

Now we do (b). We are told that $P(0)=100, B(0)=10, D(0)=9$, $M=\frac{D(0) P(0)}{B(0)}=\frac{9 \cdot 100}{10}=90$, and $k M=b=\frac{D(0)}{P(0)}=\frac{9}{100}$. So we know that

$$
P(t)=\frac{M P(0)}{P(0)+(M-P(0)) e^{k M t}}=\frac{90 \cdot 100}{100+(90-100) e^{\frac{9 t}{100}}} .
$$

We are supposed to find $t$ with $P(t)=900$. We solve the following equation for $t$ :

$$
\begin{gathered}
900=\frac{90 \cdot 100}{100+(90-100) e^{\frac{9 t}{100}}} \\
1=\frac{10}{100+(90-100) e^{\frac{9 t}{100}}} \\
100+(90-100) e^{\frac{9 t}{100}}=10 \\
-10 e^{\frac{9 t}{100}}=-90 \\
e^{\frac{9 t}{100}}=9 \\
\frac{9 t}{100}=\ln 9
\end{gathered}
$$

The population hits 900 when the time is $\frac{100}{9} \ln 9$ months.
6. (6 points) Consider the initial value problem $\frac{d y}{d x}=x+y^{3}, y(1)=2$. Use Euler's method to approximate $y(3 / 2)$. Use two steps, each of size $1 / 4$.

Consider the picture:

The curve represents the correct solution of the initial value problem. We approximate the real solution with the two line segments. The line segment from $(1,2)$ to $\left(\frac{5}{4}, y_{1}\right)$ has slope equal to $\left.\left(x+y^{3}\right)\right|_{(1,2)}$. The line segment from $\left(\frac{5}{4}, y_{1}\right)$ to $\left(\frac{3}{2}, y_{2}\right)$ has slope equal to $\left.\left(x+y^{3}\right)\right|_{\left(\frac{5}{4}, y_{1}\right)}$. Of course, $y_{2}$ is our approximation of $y\left(\frac{3}{2}\right)$.

We see that $\left.\left(x+y^{3}\right)\right|_{(1,2)}=9$; so, the segment from $(1,2)$ to $\left(\frac{5}{4}, y_{1}\right)$ has slope equal to 9 . This segment lives on the line

$$
y-2=9(x-1)
$$

which is $y=9 x-7$. Thus, $y_{1}=45 / 4-7=17 / 4$.

The line segment from $\left(\frac{5}{4}, y_{1}\right)$ to $\left(3 / 2, y_{2}\right)$ has slope equal to

$$
\left.\left(x+y^{3}\right)\right|_{\left(\frac{5}{4}, y_{1}\right)}=\left.\left(x+y^{3}\right)\right|_{\left(\frac{5}{4}, \frac{17}{4}\right)}=\frac{5}{4}+\left(\frac{17}{4}\right)^{3}=\frac{17^{3}+16(5)}{64} .
$$

This segment lives on the line

$$
y-\frac{17}{4}=\frac{17^{3}+16(5)}{64}\left(x-\frac{5}{4}\right)
$$

which is

$$
y=\frac{17^{3}+16(5)}{64}\left(x-\frac{5}{4}\right)+\frac{17}{4}
$$

Our approximation of $y(3 / 2)$ is

$$
y_{2}=\frac{17^{3}+16(5)}{64}\left(\frac{1}{4}\right)+\frac{17}{4}
$$

