Math 242, Exam 3 SOLUTION, Spring 2010
Write everything on the blank paper provided.

You should KEEP this piece of paper.

If possible: turn the problems in order (use as much paper as necessary), use only one side of each piece of paper, and leave 1 square inch in the upper left hand corner for the staple. If you forget some of these requests, don't worry about it - I will still grade your exam.

The exam is worth 50 points. There are 4 problems.
SHOW your work. CIRCLE your answer. Write coherently.
No Calculators or Cell phones.
I will post the solutions later today.

1. ($\mathbf{1 2}$ points) Find the general solution of $y^{\prime \prime}-4 y=2 e^{2 x}$.

We first solve the corresponding homogeneous equation:
(hom1)

$$
y^{\prime \prime}-4 y=0
$$

For this, we try $y=e^{r x}$. We see that $y=e^{r x}$ is a solution of (hom1) precisely when $r^{2}-4=0$ or $r=2$ or $r=-2$. The general solution of (hom1) is $y=c_{1} e^{2 x}+c_{2} e^{-2 x}$. Now we look for a particular solution of the original DE. Normally, we would try $y=A e^{2 x}$; however $e^{2 x}$ is a solution of the corresponding homogeneous DE so it will not help us solve the non-homogeneous DE. Instead, we try $y=A x e^{2 x}$. We compute $y^{\prime}=2 A x e^{2 x}+A e^{2 x}$ and $y^{\prime \prime}=4 A x e^{2 x}+2 A e^{2 x}+2 A e^{2 x}$. When we plug this candidate into the original DE we obtain:

$$
\left(4 A x e^{2 x}+4 A e^{2 x}\right)-4\left(A e^{2 x}\right)=2 e^{2 x}
$$

which is

$$
4 A e^{2 x}=2 e^{2 x}
$$

We take $A=\frac{1}{2}$. So $y_{p}=\frac{1}{2} x e^{2 x}$ is a particular solution of the original DE and the general solution of the DE is

$$
y=c_{1} e^{2 x}+c_{2} e^{-2 x}+\frac{1}{2} x e^{2 x}
$$

2. (12 points) Find the general solution of $3 y^{\prime \prime}+y^{\prime}-2 y=2 \cos x$.

We first solve the corresponding homogeneous equation:
(hom2)

$$
3 y^{\prime \prime}+y^{\prime}-2 y=0
$$

For this, we try $y=e^{r x}$. We see that $y=e^{r x}$ is a solution of (hom2) precisely when $3 r^{2}+r-2=0$; that is, $(3 r-2)(r+1)=0$, or $r=2 / 3,-1$. The general solution of (hom2) is $y=c_{1} y^{(2 / 3) x}+c_{2} e^{-x}$. Now we look for a particular solution of the original DE. We try $y=A \cos x+B \sin x$. We compute $y^{\prime}=-A \sin x+B \cos x$ and $y^{\prime \prime}=-A \cos x-B \sin x$. We plug this candidate into the original DE. We want

$$
3(-A \cos x-B \sin x)+(-A \sin x+B \cos x)-2(A \cos x+B \sin x)=2 \cos x
$$

We want

$$
(-3 A+B-2 A) \cos x+(-3 B-A-2 B) \sin x=2 \cos x
$$

We want

$$
-5 A+B=2 \quad \text { and } \quad-5 B-A=0
$$

We want

$$
A=-5 B \quad \text { and } \quad-5(-5 B)+B=2 .
$$

We want

$$
B=\frac{1}{13} \quad \text { and } \quad A=\frac{-5}{13} .
$$

So, $y_{p}=\frac{-5}{13} \cos x+\frac{1}{13} \sin x$ is a particular solution of the original DE and

$$
y=c_{1} y^{(2 / 3) x}+c_{2} e^{-x}+\frac{-5}{13} \cos x+\frac{1}{13} \sin x
$$

is the general solution of the original DE .
3. (13 points) Solve the Initial Value Problem $2 y^{\prime \prime}+12 y^{\prime}+50 y=0$, $y(0)=0, y^{\prime}(0)=-8$.
Try $y(x)=e^{r x}$. We solve $2 r^{2}+12 r+50=0$. We solve $2\left(r^{2}+6 r+25\right)=0$. We have

$$
r=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}=\frac{-6 \pm \sqrt{36-100}}{2}=\frac{-6 \pm 8 i}{2}=-3 \pm 4 i,
$$

and the general solution of the Differential Equation is

$$
y(x)=e^{-3 x}\left(c_{1} \cos 4 x+c_{2} \sin 4 x\right) .
$$

We compute

$$
y^{\prime}(x)=e^{-3 x}\left(-4 c_{1} \sin 4 x+4 c_{2} \cos 4 x\right)-3 e^{-3 x}\left(c_{1} \cos 4 x+c_{2} \sin 4 x\right)
$$

Plug the initial condition into our general solution to obtain:

$$
0=y(0)=c_{1} \quad \text { and } \quad-8=y^{\prime}(0)=4 c_{2}-3 c_{1}=4 c_{2} .
$$

So, $c_{2}=-2$ and

$$
y(x)=-2 e^{-3 x} \sin 4 x
$$

4. (13 points) Find the general solution of $9 y^{\prime \prime \prime}+12 y^{\prime \prime}+4 y^{\prime}=0$.

Try $y(x)=e^{r x}$. We solve $9 r^{3}+12 r^{2}+4 r=0$. We solve $r(3 r+2)^{2}=0$. The general solution of the Differential Equation is

$$
y=c_{1}+e^{\frac{-2 x}{3}}\left(c_{2}+c_{3} x\right)
$$

