Math 242, Exam 3, Spring 2017, 1:15 Class

Write everything on the blank paper provided. You should KEEP this piece of paper. If possible: return the problems in order (use as much paper as necessary), use only one side of each piece of paper, and leave 1 square inch in the upper left hand corner for the staple. If you forget some of these requests, don't worry about it – I will still grade your exam.

The exam is worth 50 points. Each problem is worth 10 points. Please make your work coherent, complete, and correct. Please \boxed{CIRCLE} your answer. Please **CHECK** your answer whenever possible.

The solutions will be posted later today. The exams will be returned in class on Thursday, March 30.

No Calculators or Cell phones.

(1) State the Existence and Uniqueness Theorem for second order linear Differential Equations.

Consider the Initial Value Problem

$$y'' + P_1(x)y' + P_2(x)y = Q(x), \quad y(x_0) = y_0, \quad y'(x_0) = y_1.$$

If P_1 , P_2 , and Q are continuous on some open interval I which contains x_0 , then the Initial Value Problem has a unique solution which is defined on all of I.

(2) Find the general solution of $\frac{dy}{dx} + \frac{y}{x} = y^2$.

This is a Bernoulli equation. Let $v = y^{-1}$. Compute $\frac{dv}{dx} = -y^{-2}\frac{dy}{dx}$. Multiply both sides by $-y^{-2}$ to obtain $-y^{-2}\frac{dy}{dx} - \frac{y^{-1}}{x} = -1$ or

$$\frac{dv}{dx} - \frac{1}{x}v = -1.$$

Multiply both sides by $e^{\int -\frac{1}{x}dx} = \frac{1}{x}$ to obtain

$$\frac{1}{x}\frac{dv}{dx} - \frac{1}{x^2}v = -\frac{1}{x}$$
$$\frac{d}{dx}\left(\frac{1}{x}v\right) = -\frac{1}{x}$$
$$\frac{1}{x}v = -\ln|x| + C$$
$$v = -x\ln|x| + Cx$$
$$\frac{1}{y} = -x\ln|x| + Cx$$
$$\frac{1}{y} = -x\ln|x| + Cx$$

<u>Check</u> Plug $\frac{1}{-x \ln(x)+Cx} = y$ into the left side of the differential equation to obtain

$$\frac{dy}{dx} + \frac{y}{x} = -\frac{-1 - \ln x + C}{(-x\ln(x) + Cx)^2} + \frac{1}{(-x\ln(x) + Cx)}$$
$$= \frac{1}{(-x\ln(x) + Cx)^2} \left[-(-1 - \ln x + C) + \frac{(-x\ln(x) + Cx)}{x} \right]$$
$$= \frac{1}{(-x\ln(x) + Cx)^2} = y^2. \checkmark$$

(3) Find the general solution of y'' - 4y' + 13y = 0.

We consider the characteristic polynomial $r^2 - 4r + 13 = 0$. The roots of this polynomial are

$$r = \frac{4 \pm \sqrt{16 - 4(13)}}{2} = \frac{4 \pm 2\sqrt{4 - (13)}}{2} = 2 \pm 3i.$$

The solution of the differential equation is

$$y = e^{2x}(c_1\cos(3x) + c_2\sin(3x)).$$

<u>Check</u> We compute

$$y' = e^{2x}(-3c_1\sin(3x) + 3c_2\cos(3x) + 2c_1\cos 3x + 2c_2\sin 3x);$$

so

$$y' = e^{2x}([-3c_1 + 2c_2]\sin(3x) + [2c_1 + 3c_2]\cos(3x));$$

 $y'' = e^{2x}([-9c_1+6c_2]\cos(3x) + [-6c_1-9c_2]\sin(3x)) + 2e^{2x}([-3c_1+2c_2]\sin(3x) + [2c_1+3c_2]\cos(3x)).$ So,

$$y'' = e^{2x}([-5c_1 + 12c_2]\cos(3x) + [-12c_1 - 5c_2]\sin(3x))$$

Plug the proposed solution into the Differential Equation:

$$y'' - 4y' + 13y = e^{2x} \begin{cases} [-5c_1 + 12c_2]\cos(3x) + [-12c_1 - 5c_2]\sin(3x)) \\ -4([2c_1 + 3c_2]\cos(3x) + [-3c_1 + 2c_2]\sin(3x)) \\ +13(c_1\cos(3x) + c_2\sin(3x)) \end{cases}$$

and this is zero. \checkmark

(4) Find the general solution of $y'' + y' - 2y = e^x$.

To solve the homogeneous problem we consider $r^2 + r - 2 = 0$, which is (r + 2)(r - 1) = 0. The general solution of the homogeneous problem is $y = c_1 e^x + c_2 e^{-2x}$. Now we look for a solution of the non-homogeneous problem. We would try $y = Ae^x$, except this is already a solution of the homogeneous problem. So, instead, we try $y = Axe^x$. We compute $y' = Ae^x(x+1)$ and $y'' = Ae^x(x+2)$. Plug this candidate into the Differential Equation to obtain

 $Ae^x(x+2+x+1-2x)=e^x;$ so we take A=1/3. The general solution of the Differential Equation is

$$y = c_1 e^x + c_2 e^{-2x} + (1/3)x e^x.$$

Check: We compute

$$\begin{cases} y = c_1 e^x + c_2 e^{-2x} + (1/3)x e^x \\ y' = c_1 e^x - 2c_2 e^{-2x} + (1/3)e^x (x+1) \\ y'' = c_1 e^x + 4c_2 e^{-2x} + (1/3)e^x (x+2) \end{cases}$$

Plug this into the DE:

$$y'' + y' - 2y = \begin{cases} c_1 e^x + 4c_2 e^{-2x} + (1/3)e^x (x+2) \\ +c_1 e^x - 2c_2 e^{-2x} + (1/3)e^x (x+1) \\ -2(c_1 e^x + c_2 e^{-2x} + (1/3)xe^x) \end{cases}$$
$$= (1/3)e^x (x+2) + (1/3)e^x (x+1) - 2(1/3)xe^x = e^x \checkmark$$

(5) Solve the initial value problem $y'' - y = 12e^{3x}$, y(0) = 1, y'(0) = 9.

The solution of the homogeneous problem is $y = c_1 e^x - c_2 e^{-x}$. We look for a number A with $y = A e^{3x}$ is a solution of the given problem; so,

$$Ae^{3x}(9-1) = 12e^{3x}.$$

We take A = 12/8 = 3/2. The general solution of the differential equation is

$$y = c_1 e^x - c_2 e^{-x} + 3/2e^{3x}$$

We compute

$$y' = c_1 e^x + c_2 e^{-x} + (9/2) e^{3x}$$

$$\begin{cases} 1 = y(0) = c_1 - c_2 + 3/2 \\ 9 = y'(0) = c_1 + c_2 + (9/2) \end{cases}$$

$$\begin{cases} -\frac{1}{2} = c_1 - c_2 \\ \frac{9}{2} = c_1 + c_2 \end{cases}$$

$$\begin{cases} 4 = 2c_1 \\ \frac{9}{2} = c_1 + c_2 \end{cases}$$

$$\begin{cases} 2 = c_1 \\ \frac{5}{2} = c_2 \end{cases}$$

$$\boxed{y = 2e^x - \frac{5}{2}e^{-x} + 3/2e^{3x}}$$

<u>Check:</u> We compute

$$\begin{cases} y = 2e^x - \frac{5}{2}e^{-x} + \frac{3}{2}e^{3x} \\ y' = 2e^x + \frac{5}{2}e^{-x} + \frac{9}{2}e^{3x} \\ y'' = 2e^2x - \frac{5}{2}e^{-x} + \frac{27}{2}e^{3x} \end{cases}$$

$$y(0) = 2 - \frac{5}{2} + \frac{3}{2} = 1 \checkmark \ y'(0) = 2 + \frac{5}{2} + \frac{9}{2} = 9\checkmark$$
$$y'' - y = (2e^2x - \frac{5}{2}e^{-x} + \frac{27}{2}e^{3x}) - (2e^x - \frac{5}{2}e^{-x} + \frac{3}{2}e^{3x}) = 12e^x.\checkmark$$