Math 242, Exam 3, Fall 2016

Write everything on the blank paper provided. You should KEEP this piece of paper. If possible: return the problems in order (use as much paper as necessary), use only one side of each piece of paper, and leave 1 square inch in the upper left hand corner for the staple. If you forget some of these requests, don't worry about it – I will still grade your exam.

The exam is worth 50 points. Please make your work coherent, complete, and correct. Please CIRCLE your answer.

No Calculators or Cell phones.

 (1) (12 points) The acceleration of a car is proportional to the difference between 250 ft/sec and the velocity of the car. If this car can accelerate from 0 to 100 ft/sec in 10 seconds, how long will it take for the car to accelerate from rest to 150 ft/sec?

Let v(t) be the velocity of the car (measured in ft/sec) at time t seconds. We are told that $\frac{dv}{dt} = k(250 - v)$. The initial condition is v(0) = 0. We are told that v(10) = 100. (This allows us to find k.) We are asked to find the time with v(t) = 150. We integrate $\int \frac{dv}{250 - v} = \int kdt$ to see that

$$-\ln(250 - v) = kt + C \tag{1}$$

The initial condition v(0) = 0 tells us that $-\ln 250 = C$. We plug in v(10) = 100 into (1) to see that $-\ln(250 - 100) = 10k - \ln 250$. It follows that

$$\ln 250 - \ln(150) = 10k$$
$$\ln \frac{250}{150} = 10k;$$

so, $\frac{\ln \frac{5}{3}}{10} = k$. We now find the time when v(t) = 150. Again, we use (1). We solve $-\ln(250 - 150) = kt + C$. We solve $-\ln(100) = (\frac{\ln \frac{5}{3}}{10})t - \ln 250$. We see that $t = \frac{\ln 250 - \ln 100}{\frac{\ln \frac{5}{3}}{10}} = 10\frac{\ln \frac{250}{10}}{\ln \frac{5}{3}} = 10\frac{\ln \frac{5}{2}}{\ln \frac{5}{3}}$ sec.

(2) (12 points) Consider the initial value problem $\frac{dy}{dx} = x + y^2$, y(1) = 2. Use Euler's method to approximate y(12/10). Use two steps, each of size 1/10.

Let $f(x, y) = x + y^2$. We consider three points (x_0, y_0) , (x_1, y_1) , and (x_2, y_2) , with $(x_0, y_0) = (1, 2)$, $x_1 = 11/10$, $x_2 = 12/10$, the slope of the line joining (x_0, y_0) and (x_1, y_1) is $f(x_0, y_0)$ and the slope of the line joining (x_1, y_1) and (x_2, y_2) is $f(x_1, y_1)$. The number y_2 is then our approximation of y(12/10).

We first make the slope of the line joining (x_0, y_0) and (x_1, y_1) be $f(x_0, y_0)$:

$$\frac{y_1 - 2}{1/10} = 1 + 2^2;$$

so $y_1 = 2 + \frac{1}{2}$.

We now make the slope of the line joining (x_1, y_1) and (x_2, y_2) be $f(x_1, y_1)$:

$$\frac{y_2 - 5/2}{1/10} = 11/10 + (5/2)^2;$$

Thus,

our approximation of y(12/10) is $y_2 = 5/2 + (11/10 + (5/2)^2)(1/10)$.

(3) (13 points) Solve the Initial Value Problem

$$\begin{cases} y'' - 2y' + y = 2e^x \\ y(0) = 2, \quad y'(0) = 4. \end{cases}$$

Please check your answer.

We first solve the homogeneous problem y'' - 2y' + y = 0. We try $y = e^{rx}$ and deal with the characteristic polynomial $r^2 - 2r + 1 = 0$, which is $(r-1)^2 = 0$. The corresponding solutions of the homogeneous differential equation are $y = e^x$ and $y = xe^x$. We would look for a solution of the non-homogeneous problem of the form $y = Ae^x$; however this is a solution of the homogeneous problem; so we would try $y = Axe^x$ instead. Alas, this is also a solution of the homogeneous problem; so we try $y = Ax^2e^x$. We want to find A so that $y = Ax^2e^x$ is a solution of $y'' - 2y' + y = 2e^x$. We take derivatives of $y = Ax^2e^x$:

$$y' = Ax^2e^x + 2Axe^x = Ae^x(x^2 + 2x)$$

and

$$y'' = Ae^{x}(2x+2) + Ae^{x}(x^{2}+2x) = Ae^{x}(x^{2}+4x+2).$$

We plug our candidate into the DE. We want to find A with

$$Ae^{x}(x^{2} + 4x + 2) - 2Ae^{x}(x^{2} + 2x) + Ax^{2}e^{x} = 2e^{x}.$$

We want to find A with

$$Ae^{x}(x^{2}(1-2+1)+x(4-4)+2) = 2e^{x}.$$

We want

$$Ae^x(2) = 2e^x.$$

We take A = 1. The general solution of the DE is

$$y = c_1 e^x + c_2 x e^x + x^2 e^x.$$

We use the initial conditions to find c_1 and c_2 . We compute

$$y' = e^{x}c_{1} + c_{2}(xe^{x} + e^{x}) + x^{2}e^{x} + 2xe^{x}$$
$$2 = y(0) = c_{1}$$
$$4 = y'(0) = c_{1} + c_{2}$$

Thus, $c_1 = 2$ and $c_2 = 2$. The solution of the initial value problem is

$$y = 2e^x + 2xe^x + x^2e^x;$$

which is the same as

$$y = e^x(2 + 2x + x^2).$$

Check. We compute

$$y' = e^{x}(2+2x) + e^{x}(2+2x+x^{2}) = e^{x}(4+4x+x^{2})$$
$$y'' = e^{x}(4+2x) + e^{x}(4+4x+x^{2}) = e^{x}(8+6x+x^{2}).$$

We see that y(0) = 2, y'(0) = 4, and when we plug y into the left side of the DE we get

$$e^{x}(8+6x+x^{2}) - 2e^{x}(4+4x+x^{2}) + e^{x}(2+2x+x^{2}),$$

and this is $2e^x$, as expected.

(4) (13 points) Find the general solution of $xy' + 4y = x^3$. Please check your answer.

This is a first order linear DE. Divide by x:

$$y' + \frac{4}{x}y = x^2.$$

Multiply both sides by $\mu(x) = e^{\int \frac{4}{x} dx} = e^{4 \ln x} = x^4$:

$$x^4y' + 4x^3y = x^6.$$

Integrate both sides:

$$x^{4}y = \frac{x^{7}}{7} + C.$$
$$y = \frac{x^{3}}{7} + Cx^{-4}.$$

Check. Plug *y* into the left side of the DE to get

$$\frac{3x^2}{7} - 4Cx^{-5} + \left(\frac{4}{x}\right)\left(\frac{x^3}{7} + Cx^{-4}\right)$$
$$= \frac{3x^2}{7} + \frac{4x^2}{7} + C(-4x^{-5} + 4x^{-5}) = x^2 \checkmark.$$