
Math 242, Exam 1, Spring 2010 SOLUTIONS
Write everything on the blank paper provided. You should KEEP this piece of
paper. If possible: turn the problems in order (use as much paper as necessary),
use only one side of each piece of paper, and leave 1 square inch in the upper left
hand corner for the staple. If you forget some of these requests, don’t worry about
it – I will still grade your exam.
The exam is worth 50 points. There are 5 problems ON TWO SIDES. Each

problem is worth 10 points. SHOW your work. CIRCLE your answer. CHECK
your answer whenever possible.
No Calculators or Cell phones.

1. Solve yy′+x =
√

x2 + y2 . Express your answer in the form y(x) . Check
your answer.

This is a homogeneous problem. Divide both sides by x to write the problem as

y

x
y′ + 1 =

√

1 +
(y

x

)2

.

Let v = y
x . In other words, xv = y . Take the derivative with respect to x to see

that xv′ + v = y′ . We must solve

v(xv′ + v) + 1 =
√

1 + v2.

We must solve

xv
dv

dx
=

√

1 + v2 − v2 − 1.

We must solve

v
dv√

1 + v2 − v2 − 1
=

dx

x
.

Integrate both sides. Let w = 1 + v2 . It follows that dw = 2vdv . We must solve

1

2

∫

dw√
w − w

= ln |x| + C.

We have

ln |x| + C =
1

2

∫

dw√
w(1 −√

w)
.

Let u =
√

w . We have du = 1
2w−1/2dw .
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We have

ln |x| + C =

∫

du

1 − u
= − ln |1 − u| = − ln |1 −

√
w| = − ln |1 −

√

1 + v2|

= − ln

∣

∣

∣

∣

∣
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√

1 +
(y

x

)2
∣

∣

∣

∣

∣

= − ln

∣

∣

∣

∣

∣

x −
√

x2 + y2

x

∣

∣

∣

∣

∣

= − ln
∣

∣

∣
x −

√

x2 + y2
∣

∣

∣
+ ln |x|.

Subtract ln |x| from both sides:

C = − ln
∣

∣

∣
x −

√

x2 + y2
∣

∣

∣

or

ln
∣

∣

∣
x −

√

x2 + y2
∣

∣

∣
= −C

Exponentiate. Let K be the new constant e−C . We have

x −
√

x2 + y2 = K;

so x − K =
√

x2 + y2 and (x − K)2 = x2 + y2 and ±
√

(x − K)2 − x2 = y.

Check: We check y = +
√

(x − K)2 − x2 , with K ≤ x . We see that

y′ =
2(x − K) − 2x

2
√

(x − K)2 − x2
=

−K
√

(x − K)2 − x2
.

So, yy′ + x = −K + x . On the other hand,

√

x2 + y2 =
√

x2 + (x − K)2 − x2 =
√

(x − K)2 = x − K.

Thus, yy′ + x =
√

y2 + x2 as required. X

2. Solve y′ = y + y3 . Express your answer in the form y(x) . Check your
answer.

This is a Bernoulli equation. Let v = y−2 . It follows that v′ = −2y−3y′ or
y3v′

−2 = y′ . At this moment our equation looks like y3v′

−2 = y + y3 . Multiply by

−2y−3 to get v′ = −2y−2 − 2 , which is v′ + 2v = −2 . This is a first order linear
DE. The integrating factor is µ = e

R

2dx = e2x . Multiply both sides by e2x . We

must solve: e2xv′ + 2e2xv = −2e2x , which is d(e2xv)
dx

= −2e2x . Integrate both
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sides with respect to x to get: e2xv = −e2x + C . So v = −1 + Ce−2x ; that is,

y−2 = −1 + Ce−2x or y = (−1 + Ce−2x)−1/2 .

Check: We see that

y′ = (−1/2)(−1 + Ce−2x)−3/2(−2Ce−2x) = (−1 + Ce−2x)−3/2Ce−2x.

On the other hand,

y+y3 = (−1+Ce−2x)−1/2+(−1+Ce−2x)−3/2 = (−1+Ce−2x)−3/2(−1+Ce−2x+1)

= (−1 + Ce−2x)−3/2Ce−2x.

These agree. X

3. A tank contains 1000 liters (L) of a solution consisting of 100 kg of salt
dissolved in water. Pure water is pumped into the tank at the rate of
5 L/s, and the mixture — kept uniform by stirring — is pumped out
at the same rate. How long will it be until only 10 kg of salt remains
in the tank?

Let x(t) be the number of kg of salt in the tank at time t seconds. The problem tells

us that dx
dt

= 0 − 5L
s

xkg
1000L

. So, dx
dt

= x
−200

. Separate the variables: dx
x

= −1
200

dt .

Integrate to see ln x = −1
200

t + C or x = Ke
−1

200
t , where K is the constant

eC . The problem tells us that 100 = x(0) = K ; so, x(t) = 100e
−1

200
t . We are

supposed to find the time when 10 = x(t) . So we solve for t : 10 = 100e
−1

200
t

which becomes 1
10 = e

−1

200
t . Take ln of both sides to get − ln(10) = −1

200 t , or

t = 200 ln10 seconds .

4.

(a) State the Existence and Uniqueness Theorem for first order
differential equations.

Consider the Initial Value Problem IVP: y′ = f(x, y) with y(x0) = y0 .

(a) If f is continuous on some rectangle that contains (x0, y0) in its
interior, then IVP has a solution on some interval containing x0 .

(b) If f and fy are both continuous on some rectangle that contains
(x0, y0) in its interior, then IVP has a unique solution on some interval
containing x0 .
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(b) What does the Existence and Uniqueness Theorem tell you about
the Initial Value Problem

(1 + x2)y′ = (2 + y)2 y(0) = 0?

This DE has the form y′ = f(x, y) with f(x, y) = (2+y)2

(1+x2)
. We see that f

and fy = 2(2+y)
(1+x2) are both continuous everywhere. We conclude the given

initial problem has a unique solution on some interval containing x = 0 .
(c) Solve the Initial Value Problem of part (b). Separate the variables:

∫

dy
(2+y)2 =

∫

dx
x2+1 . Integrate to get −(2 + y)−1 = arctanx + C . Plug in

y(0) = 0 to see that C = −1
2 . So the solution is

−1

arctan x − 1
2

− 2 = y

or
2

1 − 2 arctanx
− 2 = y .

Check: We see that y(0) = 2 − 2 = 0 . X We also see that

y′ =
−2

(1 − 2 arctanx)2
(−2)

1

1 + x2
;

so,

(1 + x2)y′ =
4

(1 − 2 arctanx)2
.

On the other hand,

(y + 2)2 =

(

2

1 − 2 arctanx

)2

.

These agree. X

(d) What does the Existence and Uniqueness Theorem tell you about
the Initial Value Problem

(1 + x2)y′ = (2 + y)2 y(0) = −2?
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This DE has the form y′ = f(x, y) with f(x, y) = (2+y)2

(1+x2) . We see that f

and fy = 2(2+y)
(1+x2)

are both continuous everywhere. We conclude the given

initial problem has a unique solution on some interval containing x = 0 .
(e) Solve the Initial Value Problem of part (d). The technique we used

in (c) does not work because we can not divide by y + 2 if y is sometimes
equal to −2 . On the other hand, we are guaranteed that a unique solution
exists on some interval near x = 0 . We have (0,−2) on our solution

and we we leave this point we leave with slope 0 because y′ = (2+y)2

(1+x2) so

y′(0,−2) = 0 . Travel a little bit along the line y = −2 . Ask the DE which
way you should go. That is, plug (near 0,−2) into y′ . Again, y′ = 0 .

In fact the unique solution to this IVP is y = −2 . This function satisfies

the initial condition and y′ is always zero so (1 + x2)0 = (0)2 does indeed
hold!

5. When the brakes are applied to a certain car, the acceleration of the
car is −k m/s 2 for some positive constant k . Suppose that the car is
traveling at the velocity v0 m/s when the brakes are first applied and
that the brakes continue to be applied until the car stops.

(a) Find the distance that the car travels between the moment that
the brakes are first applied and the moment when the car stops.
(Your answer will be expressed in terms of k and v0 .)

Let x(t) be the position of the car at time t . We take t = 0 to be the
moment that the brakes are applied. So v(0) = v0 and x(0) = 0 . We are
told x′′ = −k . We integrate and plug in the points to see v(t) = −kt + v0

and x(t) = −kt2/2 + v0t . Let ts be the time when the car stops. We have
0 = v(ts) = −kts + v0 . Thus, ts = v0/k . The distance traveled while the
brakes were applied is

x(ts) = x(v0/k) = −k(v0/k)2/2 + v0(v0/k) = (v2
0/k)(1 − 1/2) =

v2
0

2k
.

(b) How does the stopping distance change if the initial velocity is
changed to 3v0 ?

The stopping distance is multiplied by 32 is v0 is replaced by 3v0 .


