Math 242, Exam 1, Solutions, Fall, 2023

You should KEEP this piece of paper. Write everything on the blank paper provided. Return the problems in order (use as much paper as necessary), use only one side of each piece of paper. Number your pages and write your name on each page. Take a picture of your exam (for your records) just before you turn the exam in. I will e-mail your grade and my comments to you. I will keep your exam. Fold your exam in half before you turn it in.

The exam is worth 50 points. Each problem is worth 10 points. Make your work coherent, complete, and correct. Please $C I R C L E$ your answer. Please CHECK your answer whenever possible.
The solutions will be posted later today.
No Calculators, Cell phones, computers, notes, etc.
(1) A population of 80 cougars decreases at a rate of 5% per year. How many cougars will there be after 6 years?

Let $P(t)$ be the number of cougars at time t. We are told that $\frac{d P}{d t}=-.05 P$ and $P(0)=80$.
Solve the inital value problem; get $P(t)=80 e^{-.05 t}$. The number of cougars after 6 years is $P(6)=80 e^{-6(.05)}$.
(2) Set this problem up completely. DO NOT SOLVE IT. A 120-gallon tank initially contains 90 pounds of salt dissolved in 90 gallons of water. Brine containing 2 pounds/gallon of salt flows into the tank at the rate of 4 gallons per minute, and the well-stirred mixture flows out of the tank at the rate of 3 gallons per minute. How much salt does the tank contain when it is full?

Answer: Let $x(t)$ be the number of pounds of salt in the tank at time t. We are told that $x(0)=90$. We are also told that

$$
\frac{d x}{d t}=2 \frac{\mathrm{lbs}}{\mathrm{gal}} \times 4 \frac{\mathrm{gal}}{\min }-\frac{x}{90+t} \frac{\mathrm{lbs}}{\mathrm{gal}} \times 3 \frac{\mathrm{gal}}{\min } .
$$

We are supposed to solve the Initial Value Problem
$\left\{\begin{array}{l}\frac{d x}{d t}=8-3 \frac{x}{90+t} \\ x(0)=90\end{array}\right.$
This will give us a function $x(t)=\ldots$. The answer is $x(30)$.

Explanation: Notice that $90+t$ is the amount of brine in the tank at time t. (There are 90 gallons in the tank at $t=0 ; 91$ gallons at $t=1,92$ gallons at $t=2$. The tank is full at $t=30$.)
(3) At time zero an obect has position x_{0} and velocity v_{0}. Suppose that the object moves through a resisting medium with resistance proportional to its velocity v, so that $\frac{d v}{d t}=-k v$. Find the velocity and position of the object at time t.

Let $x(t)$ be the position of the object at time t. It follows that $v(t)=\frac{d x}{d t}$ is the velocity of the object at time t.

We first solve the Initial Value Problem

$$
\frac{d v}{d t}=-k v, \quad v(0)=v_{0} .
$$

Separate the variables and integrate:

$$
\begin{gathered}
\int \frac{d v}{v}=-\int k d t \\
\ln |v|=-k t+C \\
|v|=e^{C} e^{-k t} \\
v= \pm e^{C} d^{-k t}
\end{gathered}
$$

Plug in $t=0$ to see that

$$
v_{0}=v(0)= \pm e^{C},
$$

$$
v(t)=v_{0} e^{-k t} \quad \text { This is part of our answer. }
$$

Now we solve the Inital Value Problem

$$
\frac{d x}{d t}=v_{0} e^{-k t}, \quad x(0)=x_{0} .
$$

We separate the variables and integrate

$$
\begin{gathered}
\int d x=\int v_{0} e^{-k t} d t \\
x(t)=\frac{v_{0}}{-k} e^{-k t}+C_{2}
\end{gathered}
$$

Plug in $t=0$ to see that

$$
x_{0}=x(0)=\frac{v_{0}}{-k}+C_{2}
$$

So

$$
x_{0}+\frac{v_{0}}{k}=C_{2}
$$

and

$$
x(t)=\frac{v_{0}}{-k} e^{-k t}+x_{0}+\frac{v_{0}}{k} .
$$

In other words,

$$
x(t)=\frac{v_{0}}{k}\left(1-e^{-k t}\right)+x_{0} \text {. This is the rest of our answer. }
$$

(4) Solve the Differential Equation $x y^{\prime}+2 y=6 x^{2} \sqrt{y}$.

This is a Bernoulli equation with $n=1 / 2$. We let $v=y^{1-n}$; so,

$$
v=y^{1 / 2} .
$$

It follows that $\frac{d v}{d x}=\frac{1}{2} y^{-1 / 2} \frac{d y}{d x}$. Multiply both sides of the original equation by $\frac{1}{2} y^{-1 / 2}$ to obtain

$$
\begin{gather*}
x\left(\frac{1}{2}\right) y^{-1 / 2} y^{\prime}+y^{1 / 2}=3 x^{2} \\
x \frac{d v}{d x}+v=3 x^{2} \\
\frac{d v}{d x}+\frac{1}{x} v=3 x . \tag{1}
\end{gather*}
$$

This is a First Order Linear Differential Equation. We multiply both sides of (1) by

$$
\mu(x)=e^{\int P(x) d x}=e^{\int \frac{1}{x} d x}=e^{\ln x}=x
$$

to obtain

$$
x \frac{d v}{d x}+v=3 x^{2}
$$

The left side of the most recent equation is $\frac{d}{d x}(x v)$. To solve

$$
\frac{d}{d x}(x v)=3 x^{2}
$$

we integrate both sides with respect to x. Thus,

$$
x v=x^{3}+C .
$$

Thus,

$$
\begin{gathered}
v=x^{2}+\frac{C}{x} \\
y^{1 / 2}=x^{2}+\frac{C}{x} \\
y=\left(x^{2}+\frac{C}{x}\right)^{2} .
\end{gathered}
$$

(5) The Logistic Equation is $\frac{d P}{d t}=k P(M-P)$, where k and M are positive constants. The solution of the Logistic Equation is

$$
P(t)=\frac{M P(0)}{P(0)+(M-P(0)) e^{-k M t}} .
$$

Recall that if a population $P(t)$ satisfies the logistic equation

$$
\frac{d P}{d t}=a P-b P^{2}
$$

where $B=a P$ is the time rate at which births occur and $D=b P^{2}$ is the rate at which deaths occur, then the limiting population is

$$
M=\lim _{t \rightarrow \infty} P(t)=\frac{B(0) P(0)}{D(0)}
$$

Consider a rabbit population $P(t)$ which satisfies the logistic equation. If the initial population is 240 rabbits and there are 9 births per month and 12 deaths per month occurring at time $t=0$, how many months does it take for $P(t)$ to reach 105% of the limiting population M ?

We are told that $P(0)=240, B(0)=9, D(0)=12$. We calculate

$$
M=\frac{B(0) P(0)}{D(0)}=\frac{9(240)}{12}=180
$$

and

$$
k=b=\frac{D(0)}{P(0)^{2}}=\frac{12}{(240)^{2}}=\frac{1}{(240)(20)}
$$

We must find t so that

$$
\frac{105}{100}(180)=\frac{180(240)}{240+(180-240) e^{-180 t /(240) 20)}}
$$

Cancel 180 from the left and the right. Divide top and bottom on the right by 60 .

$$
\begin{gathered}
\frac{105}{100}=\frac{4}{4-e^{-(3 / 80) t}} \\
4-e^{-(3 / 80) t}=4\left(\frac{100}{105}\right) \\
4-4\left(\frac{100}{105}\right)=e^{-(3 / 80) t} \\
4\left(\frac{5}{105}\right)=e^{-(3 / 80) t} \\
\ln \left(\frac{20}{105}\right)=-(3 / 80) t \\
\ln \left(\frac{105}{20}\right)=(3 / 80) t \\
\frac{80}{3} \ln \left(\frac{105}{20}\right) \text { months }=t .
\end{gathered}
$$

