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1. Introductory remarks about the course.

Here are some preliminary remarks about the course.
(1) My name is Professor Kustin.
(2) Be sure to look at the class website often. If you don’t know the address, send

an e-mail to me at kustin@math.sc.edu
(3) Quiz 1 on Wednesday, January 15 is one of the assigned HW problems from

1.1.
(4) There is a list of assigned HW on my website. (The problems also are on the

website.)
(5) The HW is from Differential Equations and Boundary Value Problems comput-

ing and modeling sixth edition by Edwards, Penney, and Calvis.
(6) There will be an Exam or Quiz essentially every class. The exams and quizzes

will be given at the end of class. When you finish your quiz or exam, take a
picture of your solution for your records and give me your answers.

(7) I have posted a typed version of the class lectures on my website. I encourage
you to study them. In particular, if you miss a lecture, then I strongly encour-
age you to study the lecture notes. I will revise the typed notes as the class
progresses.

(8) Ask about the things you don’t understand.
• Ask in class.
• Ask during office hours.
• Send me an e-mail.
• Catch me before class.
• Cach me after class.
• Ask until you are satisfied.

(9) I want you to learn the material. (If I am not happy with your work, I will
complain vigorously.) I want you to earn a good grade. (If you mess something
up on a quiz or exam, I will surely ask you about it again. Get it right the second
time (or the third time). The grading scheme is structured so that the early miss
will not harm your final grade if you eventually figure it out. See “How your
final grade will be calculated” at the end of the syllabus for full details.)
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2. SECTION 1.1: WORDS.

Definition. A Differential Equation is an equation that involves a function, its in-
dependent variables, and its derivatives.

Examples. The following equations are Differential Equations:

(a) y′′+ y = 0 (where y = y(x)),
(b) y′ = x (where y = y(x)), and
(c) ∂2u

∂x2 +
∂2u
∂y2 = 0 (where u = u(x,y)).

Definition. A solution of a Differential Equation is a FUNCTION which satisfies
the Differential equation.

Examples. (a) All functions of the form y = asinx+bcosx are solutions of

y′′+ y = 0,

where a and b are constants. Indeed, if y = asinx+bcosx, then

y′ = acosx−bsinx and y′′ =−asinx−bcosx.

Observe that

y′′+ y = (−asinx−bcosx)+(asinx+bcosx) = 0.

(b) All functions of the form y= x2

2 +c are solutions of y′ = x, where c is a constant.
Indeed, if y = x2

2 + c, then y′ = x.
(c) All functions of the form u = eax cos(ay) are solutions of uxx +uyy = 0, where

a is a constant. Indeed, if u = eax cos(ay), then

ux = aeax cos(ay), uxx = a2eax cos(ay),

uy =−aeax sin(ay), and uyy =−a2eax cos(ay).

It is now clear that

uxx +uyy = (a2eax cos(ay))+(−a2eax cos(ay)) = 0.

Definition. The order of a Differential Equation is the largest number of derivatives
that appear in the Differential Equation.

So, y′′+ y = 0 and ∂2u
∂x2 +

∂2u
∂y2 = 0 are second order DEs and y′ = x is a first order

DE.
In Chapter 1, we study first order DEs.

Definition. If the function in a DE involves one variable, then the DE is an Ordinary
Differential Equation (ODE). If the function in a DE involves more than one vari-
able, then the DE is a Partial Differential Equation (PDE).

In Math 242, we study ODEs. PDEs are studied in Math 521.
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Example. Verify that y = xcos(lnx) is a solution of

x2y′′− xy′+2y = 0.

Solution: We calculate

y′ =
(
x(−sin(lnx))

)1
x
+ cos(lnx) =−sin(lnx)+ cos(lnx)

and

y′′ =−
(

cos(lnx)
)1

x
−
(

sin(lnx)
)1

x
.

We plug y′′, y′, and y into the left side of the original DE to obtain

x2
(
−
(

cos(lnx)
)1

x
−
(

sin(lnx)
)1

x

)
− x
(
− sin(lnx)+ cos(lnx)

)
+2
(

xcos(lnx)
)

=
(
− xcos(lnx)− xsin(lnx)

)
+
(
+ xsin(lnx)− xcos(lnx)

)
+2
(

xcos(lnx)
)
.

This is zero, as claimed.

Example. Solve the Initial Value Problem1

y′′+ y = 0, y(0) = 3, y′(0) = 4.

Solution: To do this problem you have to know the general solution of y′′+ y = 0.
We officially cover problems like this in Chapter 3. But when we get to Chapter
3; the lecture is: the general solution of y′′+ y = 0 is y = asinx+bcosx. (See for
the example on page 3.) We may as well just know that now. At any rate, once we
decide that y = asinx+bcosx is the general solution of y′′+y = 0, then all we have
to do is find a and b so that y(0) = 3 and y′(0) = 4. Well, y = asinx+ bcosx; so
3 = y(0) = b. Also, y′ = acosx−bsinx; so 4 = y′(0) = a and a = 4. We conclude
that

y = 4sinx+3cosx

is the solution to the IVP.

Check. We calculate

y′ = 4cosx−3sinx and y′′ =−4sinx−3cosx.

Observe that

y+ y′′ =
(

4sinx+3cosx
)
+
(
−4sinx−3cosx

)
= 0,

y(0) = 4sin(0)+3cos(0) = 3 and y′(0) = 4cos(0)−3sin(0) = 4.

1An Initial Value Problem (IVP) is a DE together with the appropriate Initial Condition. A well
posed IVP will have a unique solution. This is the main problem we consider in Math 242.
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Example. Find all values of r such that y = erx is a solution of y′′−2y′−3y = 0.

Solution:2 We compute that if y = erx, then y′ = rerx and y′′ = r2erx.
If y = erx is a solution of y′′−2y′−3y = 0, then

r2erx −2rerx −3erx = 0.

Factor out the erx. The most recent equation is

erx(r2 −2r−3) = 0.

If the product of two numbers is zero, then one of the numbers is zero. But erx is
never zero. Thus, r2 −2r−3 = 0. That is (r−3)(r+1) = 0. We have learned that
if y = erx is a solution of the DE y′′−2y′−3y = 0, then

r = 3 or r =−1.

Check. If y = e3x, then y′ = 3e3x and y′′ = 9e3x and when these functions are
plugged into y′′−2y′−3y, then the result is

9e3x −2(3e3x)−3(e3x) = (9−6−3)e3x

and this is zero. In a similar manner, if y = e−x, then y′ = −e−x and y′′ = e−x and
when these functions are plugged into y′′−2y′−3y, then the result is

e−x −2(−e−x)−3(e−x) = (1+2−3)e−x

and this is zero.

Example 2.1. Find and solve a DE which describes a function y = g(x) with the
property that the line tangent to y = g(x) at (x0,y0) intersects the x-axis at (x0

2 ,0)
for all points (x0,y0) on y = g(x).

Solution: First we find the DE. We have two ways to calculate the slope of the line
tangent to y = g(x) at (x0,y0).

On the one hand, this slope must be g′(x0).
On the other hand, this tangent line passes through the points (x0,y0) and (x0

2 ,0).
Thus the slope must equal

y0 −0
x0 − x0

2
=

y0
x0
2
=

2y0

x0
.

Thus,

g′(x0) =
2y0

x0

for all points (x0,y0) which satisfy the equation y = g(x). The DE which describes
our curve is

y′ =
2y
x
.

2This is the basic technique of Chapter 3.
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To solve the DE we separate the variables3 getting all of the x’s and dx’s on one
side and all of the y’s and dy’s on the other side. Then we integrate both sides.

The DE can be written as dy
dx = 2y

x . Multiply both sides by dx and divide both
sides by y to obtain

dy
y

=
2
x

dx.

Integrate both sides ∫ dy
y

= 2
∫

dxx

ln |y|= 2ln |x|+C

We want to solve for y; so we exponentiate both sides

eln |y| = e2ln |x|+C.

Recall that elnw =w (for all positive w), ea+b = eaeb (for all a and b), and eab =(ea)b

(for all a and b). So, the most recent equation is

|y|= eC|x|2.

Of course, |y|=±y. Multiply both sides by ±. Let K =±eC. Notice that |x|2 = x2.
Our solution is

y = Kx2 for any non-zero constant K.

Check. Fix a non-zero constant K and fix a point (x0,y0) on y = Kx2. The origin
does not work particularly well because the tangent line is the x-axis; so the inter-
section of the tangent line and the x-axis is more than one point. So we assume
ahead of time that x0 is not zero. We calculate the equation of the line tangent to
y = Kx2 at (x0,y0) and show that (x0

2 ,0) is a point on the tangent line. The slope of
the tangent line is y′(x0) = 2Kx0. Observe that y0 = y(x0) = Kx2

0. The tangent line
is y− y0 = 2Kx0(x− x0). Observe that (x0/2,0) is on the tangent line because

0− y0 = 2Kx0

(x0

2
− x0

)
since the right side is

2Kx0

(
−x0

2

)
=−Kx2

0 =−y0,

as claimed. There is a picture on the next page.

3This is the technique of section 1.4.
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3. SECTION 1.2: DIRECT INTEGRATION.

Lecture. To solve y′ = f (x), integrate both sides:

y =
∫

f (x)dx.

Example. Solve the Initial Value Problem: y′ = lnx, y(1) = 5.

Solution: Integrate both sides to obtain

y =
∫

lnxdx.

To do this integral we use Integration by Parts:4∫
udv = uv−

∫
vdu.

Take u = lnx and dv = dx. Compute du = 1
x dx and v = x. Observe that∫

lnxdx =
∫

udv = uv−
∫

vdu = x lnx−
∫

dx = x lnx− x+C.

Of course, this is correct because
d
dx(x lnx− x) = x1

x + lnx−1 = lnx.

We have found that y = x lnx−x+C satisfies the DE y′ = lnx for all constants C.
Now we must find the C which also causes the Initial Condition to be satisfied. We
need

5 = y(1) = 1ln(1)−1+C.

Of course, ln(1) = 0. We take C = 6. The solution is

y = x lnx− x+6.

4Integration by parts is a reformulation of the product rule. We use it often. The product rule
says d(uv)

dx = u dv
dx +v du

dx . Multiply both sides by dx to obtain d(uv) = udv+vdu; integrate both sides:
uv =

∫
udv+

∫
vdu; and rearrange things to obtain the ultimate formula∫

udv = uv−
∫

vdu.

One uses Integration by Parts to integrate the product of unrelated functions (like
∫

ex sinxdx), the
inverse of well-understood functions (like

∫
lnxdx (Notice that lnx is the inverse of ex and ex is

exceptionally well-understood.)), and tricky Trig functions (like
∫

sec3 xdx).
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4. SECTIONS 1.3 AND 2.4: THE EXISTENCE AND UNIQUENESS THEOREM

AND EULER’S METHOD.

Section 1.3 is “The Existence and Uniqueness Theorem for First Order Initial Value
Problems”.

Section 2.4 is “Euler’s method for approximating a numerical solution to an Initial
Value Problem”.

Section 1.3 is the most theoretical section that we cover; section 2.4 is the most
grubby section that we cover.

Both sections boil down to the same thing. They both boil down to the fact that

Most of the time the IVP

dy
dx = f (x,y) y(x0) = y0

has a unique solution.

Remarks.
• This is awesome! Think how many situations in life do not have a solution!
• Of course, I will make sense of the key word “most”.
• The numerical approach explains the theorem!

• Here is Euler’s method for approximating a numerical solution for an Initial Value
Problem.

Consider the IVP y′ = f (x,y), y(x0) = y0.

The goal5 is to approximate y(xlast).

The method is essentially obvious.

• Start at (x0,y0).
• Take a small step along the line through (x0,y0) with slope f (x0,y0).
• Now you are standing at the point (x1,y1). Take a small step along the line

through (x1,y1) with slope f (x1,y1).
• Proceed in this manner until your x-coordinate is xlast. Whatever your y-

coordinate is is your approximation of y(xlast).

If you want a better approximation, take smaller steps. If f is sufficiently contin-
uous, take a limit of your approximations.

There is a picture of Euler’s method on the next page.

5Of course, the “best” answer would be the entire function y which solves the IVP. But if one
does not know how to find all of y, then the next best thing is to approximate y evaluated at the last
x of interest.
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Example 4.1. Consider the Initial Value Problem y′ = 2y, y(0) = 1
2 .

(a) Use Euler’s Method to approximate y(1
2). Use two steps. Make each step size

be h = 1
4 in the x-direction.

(b) Solve the IVP. What is the real value of y(1
2)?

Solution: There is a picture for (a) on the next page. Notice that last = 2, x0 = 0,
x1 =

1
4 , and x2 =

1
2 . The number y1 is determined by the fact that the line segment

joining (x0,y0) to (x1,y1) has slope f (x0,y0) (where f (x,y) = 2y). The number y2

is determined by the fact that the line segment joining (x1,y1) to (x2,y2) has slope
f (x1,y1).

The line joining (x0,y0) to (x1,y1) has slope f (x0,y0). We know all of these
numbers except y1; so we can calculate y1. We know (x0,y0) = (0, 1

2). We know
x1 =

1
4 . We know f (x0,y0) = 2y0 = 2(1

2) = 1. Thus,

y1 − 1
2

1
4 −0

= 1 and y1 =
3
4
.

The line joining (x1,y1) to (x2,y2) has slope f (x1,y1). We know all of these
numbers except y2; so we can calculate y2. We know (x1,y1) = (1

4 ,
3
4). We know

x2 =
1
2 . We know f (x1,y1) = 2y1 = 2(3

4) =
3
2 . Thus,

y2 − 3
4

1
2 −

1
4

=
3
2

and y2 =
9
8
= 1.125

(b) To solve the DE y′ = 2y we separate the variables, then integrate. The DE is
dy
dx = 2y, which becomes

∫ dy
y =

∫
2dx. Thus, ln |y|= 2x+C.

eln |y| = e2x+C

|y|= eCe2x

y =±eCe2x

Let K be the constant ±eC. The general solution of the DE y′ = 2y is y = Ke2x.
Now we pick K so that the initial condition y(0) = 1

2 is satisfied:
1
2
= y(0) = Ke0 = K.

Thus, the real solution of the initial value problem is y = 1
2e2x and the real value of

y(1
2) is y(1

2) =
e
2 . The number e/2 is approximately equal to 1.359. Thus, our ap-

proximation y2 =
9
8 of y(1

2) is close to, but less than, the real value of y(1
2).
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I promised to tell you an honest version of the Existence and Uniqueness Theo-
rem for first order Initial Value Problems.

Theorem. Assume f (x,y) and ∂ f
∂y are continuous on some open region which con-

tains (x0,y0) in its interior. Then the Initial Value Problem
dy
dx

= f (x,y) y(x0) = y0

has a unique solution y = y(x) which is defined on some open interval I which
contains x0.

I put a picture of The Existence and Uniqueness Theorem on the next page.
I should define “continuous”. The function f (x,y) is continuous at (x0,y0) if

(1) f (x0,y0) exists,
(2) lim

(x,y)→(x0,y0)
f (x,y) exists, and

(3) lim
(x,y)→(x0,y0)

f (x,y) = f (x0,y0).

The main point is that if f (x0,y0) or ∂ f
∂y (x0,y0) does not make any sense (because

the symbols tell you to divide by zero, or take the square root of a negative number,
or take the logarithm of a non-positive number), then the Existence and Uniqueness
Theorem does not make any promises.

Keep in mind that all of our favorite functions (polynomials, rational functions,
trig functions, exponential functions, logarithm functions, square root functions,
etc.) are continuous wherever they are defined.

Example. What does the Existence and Uniqueness say about the IVP

(4.1.1) y′ = 2y, y(0) =
1
2

?

The “ f ” is f (x,y) = 2y and ∂ f
∂y = 2. (Of course, x0 = 0 and y0 =

1
2 .) The functions

2y and 2 are continuous everywhere. The Existence and Uniqueness Theorem guar-
antees that the IVP (4.1.1) has a unique solution which is defined on some open
interval which contains 0.

Example. What does the Existence and Uniqueness Theorem say about Initial
Value Problems of the form

y′ =
2y
x

y(0) = y0?

We thought about this problem in Example 2.1 on page 5. In this problem “ f ” is 2y
x

and ∂ f
∂y = 2

x . Neither f nor ∂ f
∂y is continuous at (0,y0), so the Existence and Unique-

ness Theorem makes no guarantees here. (The Theorem is a one way result. If the
hypotheses are satisfied, then the conclusion will happen. The Theorem makes no
assertion about what happens when the hypotheses are not satisfied.) On the other
hand, when we did Example 2.1 we saw that neither our problem nor our answer
really made sense when x = 0.
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Section 1.2, problem 32. Suppose a car skids 15 m if it is moving at 50 km/h when
the brakes are applied. Assuming that the car has the same constant deceleration,
how far will the car skid if it is moving at 100 km/hr when the brakes are applied?
Solution: Let x be the position of the car at time t. Let t = 0 be the moment the
brakes are applied. Take x(0) = 0. Let −k be the constant deceleration of this car.
(Notice that k is a positive number.) Let v0 be the speed of the car when the brakes
are applied. Our plan is to find a formula for the stopping distance in terms of k and
v0. Let tstop be the time when the car stops. Of course, x(tstop) is how far the car
skidded.

The Initial Value Problem is x′′ = −k, x′(0) = v0, and x(0) = 0. The solution of
the IVP is x(t)=−kt2/2+v0t and x′(t)=−tk+v0. The car stops when x′(tstop)= 0;
so 0 = −ktstop + v0. So the car stops at tstop =

v0
k . The position of the car when it

stops is x(tstop) = −k(v0
k )

2/2+ v0(
v0
k ) =

v2
0

2k . If the initial speed is doubled then
the stopping distance is multiplied by a factor of 4. In particular if the initial
speed is raised from 50 k/h to 100 k/h, then the stopping distance increases from 15
m to 60 m.

5. SECTIONS 1.4 AND 2.3: SEPARATE THE VARIABLES.

Here is the lecture for section 1.4: If it is possible to get all of the x’s and dx’s on
one side and all of the y’s and dy’s on the other side, then do it and integrate both
sides.

Section 2.3 is called Motion problems; but it turns out that all of the problems
in the homework set for 2.3 can be solved by separating the variables. We solved
Example 2.1 by separating the variables. We solved Example 4.1.(b) by separating
the variables. We solved homework problem 46 from section 1.1 by separating the
variables.

Example. (This is problem 46 from section 1.1.) Suppose the velocity v of a mo-
torboat coasting in the water satisfies the DE dv

dt = kv2. The initial velocity of the
motorboat is v(0) = 10 meter/second2 and v is decreasing at the rate of 1 m/s2, when
v = 5 m/s.6 How long does it take for the velocity of the boat to decrease to 1 m/s?
to 1/10 m/s? When does the boat come to a stop?

6Keep in mind that dv
dt is acceleration and Newton’s Second Law of motion is F = ma. The DE

says that the force acting on the boat is proportional to the velocity of the boat. The velocity is
decreasing. So the force acting on the boat is a resisting force. It appears plausible to think that
when the boat is going fast, the there is a great deal of resistance because the water is slapping really
hard against the side of the boat. But when the boat slows down there will be less slapping and less
resistance. So at first glance dv

dt = kv2 appears to be a reasonable DE for the motion of this boat.
Stay tuned!
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First we record what we know:
dv
dt

= kv2

v(0) = 10

dv
dt

∣∣∣∣
v=5

=−1

Of course, the questions are:

(a) Find t with v(t) = 1.
(b) Find t with v(t) = 1

10 .
(c) Find t with v(t) = 0.

Notice that
dv
dt

= kv2

v(0) = 10

is an ordinary IVP.
The information dv

dt |v=5 = −1 is given so that we can evaluate k. Indeed, when
we plug this information into dv

dt = kv2, we learn that −1 = k(25); so, −1
25 = k. (We

will plug this in at the end. It is easier to deal with “k” than to deal with a grubby
number.)

It is easy to separate the variables in dv
dt = kv2; namely∫ dv

v2 =
∫

kdt

−v−1 = kt +C

We solve for v
−1

kt +C
= v.

Use the initial condition to find C:
−1
C

= v(0) = 10.

So, C =− 1
10 and

−1
−1
25 t − 1

10

= v.

Multiply top and bottom by −50 to learn

v =
50

2t +5
.

Now we answer (a). We see that v(t) = 1 when

1 =
50

2t +5
2t +5 = 50
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2t = 45

t = 22.5 seconds.

We answer (b). We see that v(t) = 1
10 when

1
10

=
50

2t +5
2t +5 = 500

2t = 495

t = 247.5 seconds.

We answer (c). We see that v(t) = 0 when

0 =
50

2t +5
The boat stops when 0 = 50. Oh darn.

The boat never stops .

I put a picture of v(t) = 50
2t+5 on the next page. The t-axis is a horizontal asymp-

tote for the graph. The graph, indeed, never gets to v = 0.
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Of course, the boat will come to the end of the lake, or the person in the boat will
hop out and pull the boat in to shore, or we will use a different DE when v is small.

Example 5.1. (This is problem 45 from section 1.1.) Let P(t) represent the number
of rodents at time t. Suppose P satisfies the differential equation dP

dt = kP2. Initially,
there are P(0)= 2 rodents and their number is increasing at the rate of dP

dt = 1 rodent
per month when there are P = 10 rodents. How long will it take for the population
to grow to 100 rodents? To 1000 rodents? What is happening here?

Answer: The Initial Value Problem is
dP
dt = kP2 P(0) = 2.

The information “their number is increasing at the rate of dP
dt = 1 rodent per month

when there are P = 10 rodents” is provided to enable us to determine the constant
k. When this information is written as an equation it becomes

dP
dt

∣∣∣
P=10

= 1.

At any rate, when we plug P = 10 and dP
dt = 1 into the equation dP

dt = kP2, we
learn that 1 = k100; so 1

100 = k. I see no reason to use this fact until the end of the
calculation.

Now we solve the IVP. First we solve the DE: dP
dt = kP2. We are able to separate

the variables (get all of the P’s and dP’s on one side and all of the t’s and dt’s on
the other side). So we separate the variables and integrate:∫ dP

P2 =
∫

kdt

− 1
P = kt +C.

We need to solve for P. We also need to find C. We may as well find C now while it
is still easy to reach (rather than wait until it is thoroughly mixed into things). The
initial condition says that when t = 0, then P = 2; so −1

2 = C. Again I will keep
using C for a while.

We solve for P: −1
kt+C = P. Plug C =−1

2 and k = 1
100 into our expression for C to

obtain

P =
−1

1
100t − 1

2

.

Multiply top and bottom by 100:

P =
−100
t −50

or P =
100

50− t
.

We have solved the IVP. Now we can answer the questions.
The population reaches P = 100 when

100
50− t

= 100

so 1 = 50− t and t = 49 months .
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The population reaches P = 1000 when
100

50− t
= 1000

so 1
10 = 50− t and t = 49.9 months .
The rat population is exploding! The function P = −100

t−50 has a vertical asymptote
at t = 50 and lim

t→50−
P(t) = +∞.

5.A. Here are three famous and important DEs that are solved by separating
the variables.
(a) Radioactive Decay If A(t) is the amount of radioactive material present at time

t, then dA
dt = kA. See Homework problem 35.

(b) Continuously compounded interest If A(t) is the value of an investment at
time t, then dA

dt = kA. See Homework problem 37.
(c) Newton’s Law of Cooling If T (t) is the temperature of an object at time t

and A is the temperature of the surrounding medium, then dT
dt = k(T −A). See

Homework problem 43.
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6. SECTION 1.5: FIRST ORDER LINEAR DIFFERENTIAL EQUATIONS

A Differential Equation of the form

(6.0.1) y′+P(x)y = Q(x)

is a First order linear Differential Equation. The equation is called linear because it
is linear in y′ and y. In other words, some terms have y′ to the one or zero and the
rest of the terms have y to the one or zero and that is it! Terms like y2 or y′2 or yy′

or siny or ey or y
y′ DO NOT APPEAR.

We can find an explicit solution to a first order linear differential equation, but
there is a trick involved. The trick is: if you multiply the left side of (6.0.1) by

µ(x) = e
∫

P(x)dx,

then you are able to integrate the new left hand side. Indeed, the new left side

e
∫

P(x)dxy′+ e
∫

P(x)dxP(x)y

is the derivative of
µ(x)y

because the derivative of the product

µ(x)y = e
∫

P(x)dxy

is the first times the derivative of the second plus the second times the derivative of
the first

e
∫

P(x)dxy′+ ye
∫

P(x)dxP(x),

where the first is e
∫

P(x)dx, the second is y, the derivative of the second is (of course)
y′ and the derivative of the first is

e
∫

P(x)dx(times the derivative of
∫

P(x)dx)

= e
∫

P(x)dxP(x).

I write µ for Magic Multiplier (µ is a Greek m); other people write I(x) in place
of µ(x) and call I(x) an integrating factor.

Here is an example.

Example. Solve 2xy′−3y = 9x3.
We see that the problem is linear in y and y′. We divide both sides by 2x to get

the problem into the proper form.

(6.0.2) y′− 3
2x

y =
9
2

x2

The DE has the form y′+P(x)y = Q(x) where P(x) =− 3
2x and Q(x) = 9

2x2.
Multiply both sides of (6.0.2) by

µ(x) = e
∫

P(x)dx = e
∫
− 3

2x dx = e−
3
2 lnx = x−

3
2 :
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x−
3
2 y′− x−

3
2 3

2xy = x−
3
2 9

2x2

(6.0.3) x−
3
2 y′− 3

2x−
5
2 y = 9

2x1/2

Notice that the left side of (6.0.3) is the derivative of x−
3
2 y with respect to x. So,

we can integrate both sides with respect to x to obtain

x−
3
2 y =

∫ 9
2

x1/2dx =
2
3

9
2

x3/2 +C = 3x3/2 +C.

Multiply both sides of the equation by x3/2 to see that

y = 3x3 +Cx3/2 .

Check. Of course, our solution is correct. When we plug it into 2xy′−3y, we obtain

2x(9x2 + 3
2Cx1/2)−3(3x3 +Cx3/2) = 18x3 +3Cx3/2 −9x3 −3Cx3/2 = 9x3,

as expected .

Example. This is called a solution problem. It is number 36 in section 1.5. A tank
initially contains 60 gal. of pure water. Brine containing 1 lb. of salt per gallon
enters the tank at 2 gal./min., and the (perfectly mixed) solution leaves the tank at 3
gal./min.; the tank is empty after exactly one hour.

(a) Find the amount of salt in the tank after t minutes.
(b) What is the maximum amount of salt ever in the tank?

ANSWER: Let X(t) be the number of pounds of salt at time t minutes. It is clear
that dX

dt is the rate at which salt enters the tank minus the rate at which salt leaves
the tank. It is also clear that salt enters the tank at

1 lb
gal ×2 gal

min = 2 lb
min .

The rate at which salt leaves the tank is a little more complicated. It is

some number lb
gal ×3 gal

min

but we have to write something better than “some number”. At time t we know how
much liquid is in the tank, namely 60− t. (We found the equation of the line that
passes through (0,60) and losses one gallon per minute.) We have a name for the
number of pounds of salt in the tank at time t; namely X(t). So the rate at which
salt leaves the tank is

X(t)
60−t

lb
gal ×3 gal

min = 3X
60−t

lb
min

Now we have our Initial Value Problem:
dX
dt = 2− 3X

60−t X(0) = 0.

We solve the IVP. Then we answer the questions.
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It is not possible to separate the variables, but we do have a First Order linear
DE:

(6.0.4)
dX
dt

+
3

60− t
X = 2.

Take
µ(t) = e

∫ 3
60−t dt = e−3ln(60−t) = (60− t)−3.

(We do not have to write absolute value. We know that this problem all takes place
when 0 ≤ t ≤ 60, so 60− t is zero or higher.) Multiply both sides of (6.0.4) by
(60− t)−3:

(60− t)−3
(dX

dt
+

3
60− t

X
)
= 2(60− t)−3

(6.0.5) (60− t)−3 dX
dt

+3(60− t)−4X = 2(60− t)−3

Notice that the left side of (6.0.5) is
d
dt ((60− t)−3X).

Integrate both sides of (6.0.5) with respect to t to obtain

(60− t)−3X =
∫

2(60− t)−3dt = (60− t)−2 +C.

Multiply both sides of the most recent equation by (60− t)3 to obtain

X = (60− t)+C(60− t)3.

Use the Initial Condition X(0) = 0 to see that

0 = (60)+C(60)3.

Thus, C = −1
(60)2 and

X(t) = (60− t)− 1
(60)2 (60− t)3

is the answer to (a).
Question (b) is a calculus problem. We are to find the maximum of X(t) for

0 ≤ t ≤ 60. We know X(0) = X(60) = 0. So the maximum of X(t) occurs when
X ′(t) = 0. We compute X ′(t) =−1+ 3

(60)2 (60− t)2. We see that X ′(t) = 0 when

1 = 3
(60)2 (60− t)2

(60)2

3 = (60− t)2

60√
3
= 60− t

t = 60− 60√
3

The maximum amount of salt in the tank is

X(60− 60√
3
) = 60√

3
− 1

(60)2 (
60√

3
)3 = 60√

3
− 60

3
√

3
= 60√

3
(2

3) =
40√

3
lbs.
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7. SECTION 1.6: SUBSTITUTION TECHNIQUES

In this section we solve three types of problems.

(1) (Homogeneous substitution) To solve dy
dx = F( y

x), let v = y
x , turn the Differential

Equation into a DE which involves the function v = v(x). You will be able to
separate the variables.

(2) (Linear substitution) To solve dy
dx = F(ax+by+ x), let v = ax+by+ c, turn the

Differential Equation into a DE which involves the function v = v(x). You will
be able to separate the variables.

(3) (Bernoulli equation) To solve y′+P(x)y = ynQ(x), let v = y1−n, turn the Dif-
ferential Equation into a DE which involves the function v = v(x). The new
problem will be a First Order Linear problem.

Example. Solve x2y′+2xy = 5y4.

Answer: If need be, divide both sides by x2 to obtain

(7.0.1) y′+ 2
x y = 5

x2 y4.

This is a Bernoulli Equation y′+P(x)y = ynQ(x) with P(x) = 2
x , Q(x) = 5

x2 , and
n = 4. Let v = y1−n = y−3. Calculate dv

dx =−3y−4 dy
dx . Multiply both sides of (7.0.1)

by −3y−4 to obtain

−3y−4y′+
2
x
(−3y−4)y =

5
x2 (−3y−4)y4

dv
dx +(−6

x )v = −15
x2

which is a first order linear DE as we expected! Multiply both sides by

µ(x) = e
∫ −6

x dx = e−6lnx = x−6

to obtain
x−6 dv

dx −6x−7v =−15x−8.

Observe that the left side is the derivative of x−6v with respect to x. Integrate both
sides with respect to x to obtain

x−6v =
15
7

x−7 +C

or

v =
15
7

x−1 +Cx6

or

y−3 =
15
7

x−1 +Cx6.

Of course, we must solve for y:

1
(15

7 x−1 +Cx6)1/3
= y.
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Check: Plug the proposed answer into the left side of the DE to obtain:

x2y′+2xy= x2
(
−1

3

)(
15
7

x−1 +Cx6
)−4/3(

−15
7

x−2 +6Cx5
)
+2x

(
15
7

x−1 +Cx6
)−1/3

.

Factor out the lowest power of (15
7 x−1 +Cx6) that appears to see that

x2y′+2xy =
(

15
7

x−1 +Cx6
)−4/3[

x2
(
−1

3

)(
−15

7
x−2 +6Cx5

)
+2x

(
15
7

x−1 +Cx6
)]

=

(
15
7

x−1 +Cx6
)−4/3[

+
5
7
−2Cx6 +

30
7
+2Cx6

]
= 5y4

Example. Solve

(7.0.2) y′ =
√

x+ y+1.

This problem has the form y′ = f (L) for some expression that is linear in both x
and y. We make a linear substitution. We let v = x+ y+ 1. We turn the DE into
a DE that involves v = v(x). We are guaranteed that we will be able to separate the
variables.

Observe that dv
dx = 1+ dy

dx . The original problem becomes

dv
dx

−1 =
√

v

or
dv
dx

=
√

v+1

or
dv√
v+1

= dx.

Integrate both sides

(7.0.3)
∫ dv√

v+1
=

∫
dx.

To integrate
∫ dv√

v+1 , we make a sneaky substitution. Let u =
√

v. It follows that
du
dv = 1

2
√

v . We may rewrite the most recent equation as 2udu = dv. Thus,∫ dv√
v+1

=
∫ 2udu

u+1
=

∫ 2(u+1)−2
u+1

du =
∫ (

2− 2
u+1

)
du

= 2u−2ln(u+1)+C = 2
√

v−2ln(
√

v+1)+C.

By the way, it is easy to check that
d
dv

(
2
√

v−2ln(
√

v+1)
)
=

1√
v+1

.

At any rate, we see that (7.0.3) yields

2
√

v−2ln(
√

v+1)+C = x,

or
2
√

x+ y+1−2ln(
√

x+ y+1+1)+C = x.
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I would like to solve the most recent equation for y. If I could, I would. But I can’t.
The best I can do is write,

Any function y = y(x) which satisfies
2
√

x+ y+1−2ln(
√

x+ y+1+1)+C = x is a solution of the
differential equation dy

dx =
√

x+ y+1.

Check. So how does one check the above answer? Well, one can use implicit
differentiation to find dy

dx . Then verify that dy
dx is equal to

√
x+ y+1.

Suppose y is a function of x and y satisfies

(7.0.4) 2
√

x+ y+1−2ln(
√

x+ y+1+1)+C = x,

then we can use implicit differentiation to find dy
dx . One merely takes d

dx of both
sides; every time one needs to find d

dx of y, one merely writes dy
dx . Eventually one

has an equation which involves x, y, and dy
dx . One solves for dy

dx . Take d
dx of both

sides of (7.0.4):

2

(
1+ dy

dx
2
√

x+ y+1

)
−2

1+ dy
dx

2
√

x+y+1√
x+ y+1+1

= 1.

Now we solve for dy
dx . Cancel the two 2’s in the first summand; cancel the two 2’s in

the second summand; and multiply the top and the bottom of the second summand
by

√
x+ y+1 in order to obtain(

1+ dy
dx√

x+ y+1

)
−

1+ dy
dx√

x+ y+1(
√

x+ y+1+1)
= 1.

Multiply both sides by
√

x+ y+1(
√

x+ y+1+1) to obtain:(
1+

dy
dx

)
(
√

x+ y+1+1)−
(

1+
dy
dx

)
=
√

x+ y+1(
√

x+ y+1+1).

Factor the left side and get(
1+

dy
dx

)
(
√

x+ y+1+1−1) =
√

x+ y+1(
√

x+ y+1+1)

or (
1+

dy
dx

)√
x+ y+1 =

√
x+ y+1(

√
x+ y+1+1).

If
√

x+ y+1 is non-zero, then divide both sides by
√

x+ y+1.

1+
dy
dx

=
√

x+ y+1+1.

Subtract 1 from each side to see that
dy
dx

=
√

x+ y+1.
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Thus, any function y = y(x) which satisfies (7.0.4) is a solution of the Differential
Equation (7.0.2).7

Example. Solve
2xyy′ = x2 +2y2.

Notice that the DE is not linear; one can not separate the variables; and one can
not make a linear substitution. One could treat it as a Bernoulli equation. I will
make a homogeneous substitution. Recall that if one is given a DE of the form
dy
dx = f ( y

x), then one can let v = y
x and turn the DE into an equation involving y(v).

One is guaranteed that one can separate the variables in the resulting equation.
Maybe you don’t see any y

x ’s in the given DE. Think about the meaning of the
word “homogeneous”. It means well-mixed. When we buy milk now, it is always
homogenized: somebody shook it up so that it has the same consistency throughout
the whole container. When my father was young, milk was not homogenized: the
cream was on the top and other parts layered below. The given DE is homogeneous
because every terms has the same degree (namely 2) in the symbols {x,y}. If we
divide by x2, then we will end up with y′ is equal to some function of y

x . There will
not be any left over unattached x’s or y’s.

Divide the given DE by x2 to obtain

2
(y

x

)
y′ = 1+2

(y
x

)2
.

Let v = y
x . It follows that xv = y. Use the product rule to see that

x
dv
dx

+ v =
dy
dx

.

The DE has become

2v(x
dv
dx

+ v) = 1+2v2

or

x
dv
dx

+ v =
1
2v

+ v

or

x
dv
dx

=
1
2v

.

Separate the variables

vdv =
1
2x

dx.

Integrate both sides
v2

2
=

1
2

ln |x|+C.

7I want to emphasize that whenever possible one solves a DE of the form dy
dx = f (x,y) for y. But

if one is not able to solve for y, then one leaves the answer in the form where y(x) is implicitly given
by some equation which involves x and y like (7.0.4). Observe that (7.0.4) is not as good as y = y(x);
but it is MUCH better than (7.0.2). In particular, (7.0.4) does not involve and derivatives.
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Multiply both sides by 2 and take the square root of both sides

v =±
√

ln |x|+2C.

Of course v = y
x . Multiply both sides by x and rename 2C to be K to obtain

y =±x
√

ln |x|+K.

Check. We assume that x is positive and we check y = x
√

lnx+K. Plug

y = x
√

lnx+K

into the left side of the original DE:

2xyy′ = 2x2√lnx+K

(
x

1
x

2
√

lnx+K
+
√

lnx+K

)
= x2 +2x2(

√
lnx+K)2

= x2 +2y2.
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8. SECTION 2.1: POPULATION MODELS

Let P(t) be the size of some population at time t. In this section we study two
DE:

(a) dP
dt = kP(M−P)

(b) dP
dt = kP(P−M)

In each DE k and M are positive constants and k is very small. Equation (a)
is called the logistic equation. It is often used to model population growth. The
mathematics for solving Equation (b) is the same as the mathematics used to solve
(a) but the result is much different. Equation (b) is called the explosion/extinction
equation.

8.A. Why the logistic equation is a good model for population growth. Lets
examine (a) more carefully:

dP
dt

= kMP− kP2

with k very small. When P is small, then the −kP2 term does not matter much and
the DE is almost dP

dt = kMP which is the DE for exponential growth. Ah, but when
P is large, then the P2 factor overcomes the small k and the −kP2 term becomes
significantly more important. As the population becomes large, there are forces
(scarcity of food or shelter, or abundance of disease) which keep the population in
check. I hope it is clear that the logistic equation is a better model for population
growth than merely DE dP

dt = (constant)P.

8.B. We solve the logistic equation. We solve

dP
dt

= kMP− kP2.

We can separate the variables:

(8.0.1)
dP

MP−P2 = k dt.

It is not difficult to integrate
1

P(M−P)
.

We use the technique of partial fractions and see what 1
P(M−P) used to look like

before some body “cleaned it up”. It used to be

1
P(M−P)

=
A
P
+

B
M−P

for some numbers A and B. We can figure out A and B. Clear the denominators:

1 = A(M−P)+BP.
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(The last equation holds for all P. The number M is fixed and not zero. Our job is
to find A and B.) Plug in P = M to learn that 1

M = B. Plug in P = 0 to learn that
1
M = A. Observe that

1
M

(
1
P
+

1
M−P

)
really does equal 1

P(M−P) . Integrate Equation (8.0.1) to obtain

1
M

∫ ( 1
P
+

1
M−P

)
dP =

∫
kdt

and
1
M
(lnP− ln |M−P|) = kt +C.

(There is no need to write |P|, because P is a population; hence it can not be nega-
tive.) Multiply both sides of the equation by M to get

ln
(

P
|M−P|

)
= Mkt +MC

Exponentiate to obtain
P

|M−P|
= eMCeMkt .

Of course, |M−P|=±(M−P). Move ± to the other side and let K =±eMC.

(8.0.2)
P

M−P
= KeMkt .

This is a good time to calculate K. Plug t = 0 into both sides of (8.0.2) to learn
that

(8.0.3)
P(0)

M−P(0)
= K.

We want to solve for P; so we multiply both sides of (8.0.2) by M−P to obtain

P = KeMkt(M−P).

Add KeMktP to both sides

P(1+KeMkt) = KeMktM.

Divide both sides by 1+KeMkt and obtain

P =
KeMktM

1+KeMkt .

This is a formula for P(t); but lets clean it up a little! Instead of having two compet-
ing exponential functions, we arrange things so that there is only one exponential
function. Instead of having the constant K appear twice, we arrange things so K
only appears once. Divide top and bottom by KeMkt . Thus,

P =
M

e−Mkt

K +1
.
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Replace K by the value given in (8.0.3).

P =
M

(M−P(0))e−Mkt

P(0) +1
.

Multiply top and bottom by P(0). We have calculated that

P(t) =
MP(0)

(M−P(0))e−Mkt +P(0)
,

or

P(t) =
MP(0)

P(0)+(M−P(0))e−Mkt .

Here is the first cool observation. If the population P(t) is governed by the logis-
tic equation, then the population is sustainable. That is,

lim
t→∞

P(t)

exists and is finite. In particular,

lim
t→∞

P(t) = lim
t→∞

MP(0)
P(0)+(M−P(0))e−Mkt =

MP(0)
P(0)

= M,

because lim
t→∞

e−Mkt = 0.

Here is the second observation. If the population P(t) starts smaller than the
limiting population (i.e. M), then the population will always be smaller than M
because the denominator of

P(t) =
MP(0)

P(0)+(M−P(0))e−Mkt

will always be bigger than P(0); hence the ratio P(0)
P(0)+(M−P(0))e−Mkt will always be

LESS THAN 1; so P(t) is some fraction times M.
Similarly, if the population starts larger than the limiting population, then the

population will always be larger than M because the multiplier P(0)
P(0)+(M−P(0))e−Mkt

will always be larger than one.
The graph of P(t) for various choices of P(0) looks like:
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Example 8.1. We do problem 15 from section 2.1. Consider a population P(t)
which satisfies the logistic equation dP

dt = aP− bP2, where a and b are constants,
B = aP is the birth rate, and D = bP2 is the death rate. Write M in terms of B(0),
D(0), and P(0).

The point of the problem is that we know the solution of dP
dt = kP(M−P). Indeed,

we know that in the long term the population will approach M.
Someone interested in the population can probably calculate B(0), D(0), and

P(0). If we can express M in terms of B(0), D(0), and P(0), then we can make a
plausible prediction of what the population will do without doing anymore calcu-
lating.

Look at the two equations:
dP
dt

= kMP− kP2

dP
dt

= aP−bP2

The coefficient of P2 is −k in the top equation and is −b in the bottom equation;
so, k = b. The coefficient of P is kM in the top equation and is a in the bottom
equation. Thus a = kM; so a = bM and a

b = M.
Plug 0 into B = aP and D = aP2 to learn that B(0) = aP(0) and D(0) = bP(0)2.

We conclude that M = a
b =

B(0)
P(0)
D(0)
P(0)2

= B(0)P(0)
D(0) . Our answer is

M =
B(0)P(0)

D(0)
.

Example 8.2. We do problem 17 from section 2.1. Here is the statement of the
problem: The Logistic Equation is dP

dt = kP(M−P), where k and M are positive
constants. The solution of the Logistic Equation is

P(t) =
MP(0)

P(0)+(M−P(0))e−kMt .

Recall that if a population P(t) satisfies the logistic equation
dP
dt

= aP−bP2,

where B = aP is the time rate at which births occur and D = bP2 is the rate at
which deaths occur, then the limiting population is

M = lim
t→∞

P(t) =
B(0)P(0)

D(0)
.

Consider a rabbit population P(t) which satisfies the logistic equation. If the
initial population is 240 rabbits and there are 9 births per month and 12 deaths
per month occurring at time t = 0, how many months does it take for P(t) to
reach 105% of the limiting population M?
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Here is the solution of the problem: We are told that P(0) = 240, B(0) = 9, D(0) =
12. We calculate

M =
B(0)P(0)

D(0)
=

9(240)
12

= 180

and

k = b =
D(0)
P(0)2 =

12
(240)2 =

1
(240)(20)

.

We must find t so that

105
100

(180) =
180(240)

240+(180−240)e−180t/((240)20)
.

Cancel 180 from the left and the right. Divide top and bottom on the right by 60.

105
100

=
4

4− e−(3/80)t

4− e−(3/80)t = 4
(

100
105

)
4−4

(
100
105

)
= e−(3/80)t

4
(

5
105

)
= e−(3/80)t

ln
(

20
105

)
=−(3/80)t

ln
(

105
20

)
= (3/80)t

80
3

ln
(

105
20

)
months = t .

Problem 18 in Section 2.1 Consider a population P(t) which satisfies the extinc-
tion/explosion Differential Equation dP

dt = aP2−bP, where B = aP2 is the time rate
at which births occur and D= bP is the rate at which deaths occur. If the initial pop-
ulation is P(0) = P0 and B0 births per month and D0 births per month are occurring
at time t = 0, show that the threshold population is M = D0P0/B0.

Solution. Compare the two forms of the extinction-explosion Differential Equation:

dP
dt

= kP2 − kMP

dP
dt

= aP2 −bP
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to see that a = k and b = kM. Plug t = 0 into the equations B = aP2 and D = bP to
see that B(0) = aP(0)2 and D(0) = bP(0). Conclude that

M =
b
k
=

b
a
=

D(0)
P(0)
B(0)
P(0)2

=
D(0)
P(0)

P(0)2

B(0)
=

D(0)P(0)
B(0)

=
D0P0

B0
.

Problem 19 in Section 2.1 Consider an alligator population which satisfies the ex-
tinction/explosion Differential Equation as in Problem 18. If the initial population
is 100 alligators and there are 10 births per month and 9 deaths per month occurring
at time t = 0, how many months does it take for P(t) to reach 10 times the threshold
population M?

Solution We saw in number 18 that M = D(0)P(0)
B(0) . This problem has

P(0) = 100, B(0) = 10, and D(0) = 9.

Thus M = 9(100)
10 = 90. We want to find t with P(t) = (90)(10) = 900. The solution

of the Initial Value Problem
dP
dt

= kP(P−M) P(0) = P0 with k and M positive

is
P =

MP0

P0 +(M−P0)ekMt .

(See problem 33 or the class notes. There is no reason to memorize this formula.)
Of course the Differential Equations

dP
dt

= kP2 − kMP

dP
dt

= aP2 −bP

are exactly the same if one takes a = k and b = kM, where B = aP2 and D = bP. In
particular, k = a = B(0)

P(0)2 =
B0
P2

0
= 10

1002 =
1

1000 . Thus,

P =
MP0

P0 +(M−P0)ekMt =
90(100)

100+(−10)e
90

1000 t
.

Our job is to find t with

900 =
90(100)

100+(−10)e
90

1000 t
.

Multiply both sides by 100−10e9t/100. Divide both sides by 900.

100−10e
9

100 t = 10.

Subtract 10 from both sides. Add 10e
9

100 t to both sides. Obtain

90 = 10e
9

100 t .
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9 = e
9

100 t

ln9 =
9

100
t

100
9

ln9 = t.

The population will reach 900, which is 10M, after
100

9
ln9 months.

8.C. We solve the explosion/extinction equation. We solve
dP
dt

= kP(P−M),

with k and M positive. We separate the variables and do the partial fractions:
dP

P(P−M)
= kdt,

∫ 1
M

(
1

P−M
− 1

P

)
dP =

∫
kdt,

ln |P−M|− lnP = Mkt +C,

|P−M|
P

= eCeMkt ,

P−M
P

= KeMkt ,

where K =±eC,
P−M = KeMktP.

At this point we calculate that P(0)−M
P(0) = K. Move all the terms with P to the left

and all of the terms without P to the right:

P(1−KeMkt) = M,

P(t) =
M

1−KeMkt ,

P(t) =
M

1− (P(0)−M)
P(0) eMkt

,

P(t) =
P(0)M

P(0)− (P(0)−M)eMkt .

We draw some conclusions.

• If P(0) = M, then P(t) = M for all t.
• If P(0) < M, then the denominator is always positive and goes to +∞ as t

goes to ∞. Thus, in this case limt→∞ P(t) = 0. (In this case the population
becomes extinct!)
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• If M < P(0), then the denominator starts positive but eventually goes to
−∞ Thus, there is a finite time when the denominator becomes 0. In other
words, there is a finite time when the population P(t) explodes to +∞. (In
problem 45 in section 1.1, see also Example 5.1 in these notes, a population
of rats exploded.)

The DE dP
dt = kP(P−M) is called the extinction/explosion DE because there

is a magic threshold. If the initial population is less than the threshold, then the
population will die out. If the initial population is above the threshold, then the
population will grow out of control. Neither of these situations is sustainable!

The graph of P(t) for various choices of P(0) looks like:
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9. SECTION 2.2: EQUILIBRIUM AND STABILITY.

This section is about Differential Equations of the form dy
dx = f (y). The authors

call such Differential Equations autonomous.
When a constant function y = c is a solution of an autonomous DE equation, then

this solution is called an equilibrium solution of the DE.
If y = c is an equilibrium solution of a DE and all solutions of the DE which

come near y = c are tangent to y = c, then y = c is stable equilibrium.
If y = c is an equlibrium solution of a DE, but y = c is not a stable equilibrium,

then y = c is an unstable equilibrium.
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Of course, if c is a number with f (c) = 0, then y = c is an equilibrium solution
of the DE dy

dx = f (y) (because d
dx(c) = 0.

Once one has identified the equilibrium solutions of dy
dx = f (y), then one can

look at the “phase diagram” to see if the equilibrium solution is stable. Draw the
y number line and mark the equilbrium solutions. The y number line has been
chopped into a handful of intervals and y′ has constant sign on each of these intevals.
So y is always increasing or always decreasing on each of these intervals. Without
making any calculation, you can see if an arbitrary solution of the DE is heading
toward or away from the nearest equilibrium solution.
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10. SECTIONS 3.1 AND 3.2: HIGHER ORDER LINEAR DIFFERENTIAL

EQUATIONS.

Definition.
(a) A Differential Equation of the form

(10.0.1) y(n)+P1(x)y(n−1)+ · · ·+Pn(x)y = Q(x)

is called an nth-order linear Differential Equation.
(b) If Q(x) = 0, then the Differential Equation (10.0.1) is called an

nth-order homogeneous linear Differential Equation.

Remarks.
(a) The Differential Equation (10.0.1) is linear in the symbols y,y′, . . . ,y(n). Each

of these symbols appears with power zero or power one. No terms involves
more than one of these symbols.

(b) A homogeneous linear Differential Equation is homogeneous in the sense that
every term has degree exactly one in the symbols y,y′, . . . ,y(n).

(c) The appropriate Initial Condition for (10.0.1) is

(10.0.2) y(a) = b0, y′(a) = b1, . . . , y(n−1)(a) = bn−1

where a,b0, . . . ,bn−1 all are numbers. Notice that there are n-parts to the Initial
Condition for an nth order Differential Equation.

Theorem. The existence and uniqueness theorem for Higher Order Linear Dif-
ferential Equations. Consider the Initial Value problem

(10.0.3)

{
y(n)+P1(x)y(n−1)+ · · ·+Pn(x)y = Q(x), (DE)
y(a) = b0, y′(a) = b1, . . . , y(n−1)(a) = bn−1 (IC)

If P1(x), . . . ,Pn(x) and Q(x) all are continuous on some open interval I which con-
tains a, then the Initial Value Problem (10.0.3) has a unique solution y = y(x) which
is defined on all of I.

Here are the steps for solving the Initial Value Problem (10.0.3).
Step 1. Find n linearly independent 8 solutions y1, . . . ,yn of the homogeneous prob-

lem9

y(n)+P1(x)y(n−1)+ · · ·+Pn(x)y = 0.
8“linearly Independent” is a subtle concept. It is a sophisticated way of saying “really really

different”. If you are expecting two different solutions, you would not be satisfied if I gave you the
same solution twice. You also would not be satisfied if I gave you a solution and then a constant
times the first solution. Similarly, if you were expecting three really different solutions, you would
not be satisfied if I gave you two different solutions and then the sum of the first two solutions as the
third solutions. The functions y1, ...,yn are linearly independent if it is impossible to write any of the
functions yi in terms of the rest of the functions with constant coefficients.

9The linear homogeneous Differential Equation has a magical property. If Y1, . . . ,YN are solutions
of a linear homogeneous Differential Equation, then c1Y1 + · · ·+ cNYN is also a solution of the
Differential Equation for all constants ci.
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Step 2. Find one particular solution ypartic of the original Differential equation (DE)
from (10.0.3).

At this point y = c1y1 + · · ·+ cnyn + ypartic is the general solution of the
original Differential Equation (DE) from (10.0.3).

Step 3. Find c1, . . . ,cn so that the Initial Condition (IC) from (10.0.3) is satisfied.

Example. Consider the Initial Value Problem

y′′+ y = ex(10.0.4)

y(0) =−1
2
, y′(0) =

3
2

(10.0.5)

(a) Verify that y = sinx and y = cosx are solutions of the homogeneous problem
y′′+ y = 0.

(b) Verify that y = 1
2ex is a solution of (10.0.4).

(c) Verify that y = c1 sinx+ c2 cosx+ 1
2ex is a solution of (10.0.4) for all constants

c1 and c2.
(d) Solve (10.0.4) and (10.0.5).

We get to work.

(a) We plug y = sinx into the left side y′′+ y = 0. If y = sinx, then y′ = cosx and
y′′ =−sinx; thus,

y′′+ y =−sinx+ sinx = 0. .

We plug y = cosx into the left side y′′+ y = 0. If y = cosx, then y′ =−sinx and
y′′ =−cosx; thus,

y′′+ y = cosx− cosx = 0. .

(b) We plug y = 1
2ex into the left side y′′+ y = ex. If y = 1

2ex, then y′ = 1
2ex and

y′′ = 1
2ex; thus,

y′′+ y =
1
2

ex +
1
2

ex = ex.

(c) We plug y = c1 sinx+ c2 cosx+ 1
2ex into the left side of y′′+ y = ex. If

y = c1 sinx+ c2 cosx+
1
2

ex,

then

y′ = c1 cosx− c2 sinx+
1
2

ex;

y′′ =−c1 sinx− c2 cosx+
1
2

ex;

and

y′′+ y =
(
− c1 sinx− c2 cosx+

1
2

ex
)
+
(

c1 sinx+ c2 cosx+
1
2

ex
)
= ex.
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(d) We find c1 and c2 so that y = c1 sinx+ c2 cosx+ 1
2ex has the property that

y(0) =−1
2

and y′(0) =
3
2
.

We know y = c1 sinx+ c2 cosx+ 1
2ex; so y(0) = c2 +

1
2 . We know

y′ = c1 cosx− c2 sinx+
1
2

ex;

so y′(0) = c1 +
1
2 . We must solve the system of equations

−1
2
= c2 +

1
2

and
3
2
= c1 +

1
2
.

Thus,
−1 = c2 and 1 = c1.

The solution of the Initial Value Problem (10.0.4) and (10.0.5) is

y = sinx− cosx+
1
2

ex.
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11. SECTION 3.3: LINEAR HOMOGENEOUS DIFFERENTIAL EQUATIONS WITH

CONSTANT COEFFICIENTS.

In this section we solve

any(n)+an−1y(n−1)+ · · ·+a1y′+a0y = 0,

where the ai’s are constants.

Example. Solve

(11.0.1) y′′−3y′+2y = 0.

Try y = erx, where r is a constant. Compute y′ = rerx and y′′ = r2erx. If y = erx is
a solution of (11.0.1), then

r2erx −3rrrx +2erx = 0.

Thus,
erx(r2 −3r+2) = 0.

If a product of two numbers is zero, then one of the numbers is zero. The function
erx is never zero; hence r2 − 3r + 2 = 0; (r − 2)(r − 1) = 0; and r = 2 or r = 1.
We easily check that y = e2x and y = ex both are solutions of (11.0.1). (Indeed.
if y = e2x, then y′ = 2e2x, y′′ = 4e2x, and y′′− 3y′+ 2y = 4e2x − 3(2e2x)+ 2e2x =

e2x(4−6+2) = 0. If y = ex, then y′ = ex, y′′ = ex, and y′′−3y′+2y = ex −3(ex)+

2ex = ex(1−3+2) = 0.) A particular solution of (11.0.1) is ypartic = 0. Thus, the
general solution of (11.0.1) is

y = c1e2x + c2ex,

where c1 and c2 are arbitrary constants.

To solve

(11.0.2) any(n)+an−1y(n−1)+ · · ·+a1y′+a0y = 0,

where the ai’s are constants:
Try y = erx. Study the characteristic equation

(11.0.3) anrn +an−1rn−1 + · · ·+a1r+a0 = 0.

(a) If (11.0.3) has n distinct real roots r1, . . . ,rn, then the general solution of (11.0.2)
is

y = c1er1x + c2er2x + · · ·+ cnernx.

(b) Special care must be taken if the characteristic equation (11.0.3) has repeated
roots.

(c) Special care must be taken if the characteristic equation (11.0.3) has non-real
roots.
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11.A. Suppose the characteristic equation has repeated real roots.

Fact 11.1. Suppose you are trying to solve

(11.0.2) any(n)+an−1y(n−1)+ · · ·+a1y′+a0y = 0,

and the corresponding characteristic equation

(11.0.3) anrn +an−1rn−1 + · · ·+a1r+a0 = 0

has a factor of the from (r− r1)
m, then the functions

y1 = er1x, y2 = xer1x, y3 = x2er1x, . . . , ym = xm−1er1x

all are solutions of (11.0.2).

Example. Solve

(11.1.1) y′′−2y′+ y = 0.

We try y = erx. We compute y′ = rerx and y′′ = r2erx. If y = erx is a solution of
(11.1.1), then10 erx(r2 − 2r + 1) = 0; and indeed, r2 − 2r + 1 = 0. Observe that
r2 − 2r+ 1 = (r− 1)2. Apply Fact 11.1 to see that y = ex and y = xex BOTH are
solutions of 11.1.1. Thus, the general solution of (11.1.1) is y = c1ex + c2xex for
constants c1 and c2.

We verify that y = c1ex+c2xex really is a solution of (11.1.1). (This will provide
a little evidence that Fact 11.1 is indeed correct.) If

y = c1ex + c2xex,

then
y′ = c1ex + c2xex + c2ex,

y′′ = c1ex + c2xex +2c2ex, and

y′′−2y′+ y = (c1ex + c2xex +2c2ex)−2(c1ex + c2xex + c2ex)+(c1ex + c2xex)

= (c1 −2c1 + c1)ex +(c2 −2c2 + c2)xex +(2c2 −2c−2)ex = 0.

11.B. Suppose the characteristic equation has non-real roots.

Fact 11.2. Suppose you are trying to solve

(11.0.2) any(n)+an−1y(n−1)+ · · ·+a1y′+a0y = 0,

and the corresponding characteristic polynomial

(11.0.3) anrn +an−1rn−1 + · · ·+a1r+a0

has a factor of the from (r− (a+bi))m, then the functions

x jeax sinbx, x jeax cosbx

all are solutions of (11.0.2), for 0 ≤ j ≤ m−1.
10It is perfectly legal to jump right from the original Differential Equation to the Characteristic

Equation without writing down y′ and y′′.
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Example. Solve y′′+ y = 0. We consider the characteristic polynomial r2 +1. Of
course, (r− i)(r+ i) = r2+1. Apply Fact 11.2 to the factor r− i of the characteristic
polynomial. In other words, take a = 0, b = 1, and m = 1. Conclude that y =

x0e0x sin(1x) and y = x0e0x cos(1x) both are solutions of y′′+y = 0. (In other words,
y = sinx and y = cosx both are solutions of y′′+ y = 0. This is true and obvious.)
Notice that the other factor, r+ i, does not give anything more. Indeed, if we apply
Fact 11.2 with a = 0, b =−1 (because r+ i is the same as r−(−i)), and m = 1, then
Fact 11.2 yields that y = x0e0x sin(−1x) and y = x0e0x cos(−1x) both are solutions
of y′′+ y = 0. In other words, y =−sinx and y = cosx are solutions of y′′+ y = 0.
We already knew about these solutions.

Example. Solve y(4)+2y′′+ y = 0. We consider the characteristic polynomial

r4 +2r2 +1.

Of course,
r4 +2r2 +1 = (r2 +1)2 = (r− i)2(r+ i)2.

Apply Fact 11.2 to the factor (r − i)2 of the characteristic polynomial. In other
words, take a = 0, b = 1, and m = 2. Conclude that

y = x0e0x sin(1x), y = x0e0x cos(1x), y = x1e0x sin(1x), and

y = x1e0x cos(1x)

all are solutions of y(4)+2y′′+ y = 0. In other words,

y = sinx, y = cosx, y = xsinx, and y = xcosx

all are solutions of y(4)+ 2y′′+ y = 0. Notice that the other factor, (r + i)2, does
not give anything more. Indeed, if we apply Fact 11.2 with a = 0, b =−1 (because
r+ i is the same as r− (−i)), and m = 2, then Fact 11.2 yields that

y = x0e0x sin(−1x), y = x0e0x cos(−1x), y = x1e0x sin(−1x), and

y = x1e0x cos(−1x)

all are solutions of y(4)+2y′′+ y = 0. In other words,

y =−sinx, y = cosx, y =−xsinx, and y = xcosx

are solutions of y(4)+2y′′+ y = 0. We already knew about these solutions.
We check that y = xcosx really is a solution of y(4)+2y′′+ y = 0. Observe that

y′ = − xsinx+ cosx,

y′′ = − xcosx−2sinx,

y′′′ = xsinx−3cosx,

y(4) = xcosx+4sinx,and

y(4)+2y′′+ y =
(

xcosx+4sinx
)
+2
(
− xcosx−2sinx

)
+
(

xcosx
)

= (1−2+1)xcosx+(4−4)sinx = 0.
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Example. Solve y′′−2y′+5y = 0.
The characteristic equation is r2 − 2r+ 5 = 0. Recall the quadratic formula. If

ax2 +bx+ c = 0, then

x =
−b±

√
b2 −4ac

2a
.

If r is a root of the characteristic equation, then

r =
2±

√
4−20
2

=
2±4i

2
= 1±2i.

We apply Fact 11.2 with a = 1, b = 2 and m = 1 to see that

y = eax cos(bx) andy = eax sin(bx)

are solutions of y′′−2y′+5y = 0. Thus, the general solution of y′′−2y′+5y = 0 is

y = c1ex cos(2x)+ c2ex sin(2x).

We check that y = ex cos(2x) really is a solution of y′′− 2y′+ 5y = 0. Observe
that if y = ex cos(2x), then

y′ = −2ex sin(2x)+ ex cos(2x)

y′′ = −2ex sin(2x)−4ex cos(2x)

−2ex sin(2x)+ ex cos(2x)

= −4ex sin(2x)−3ex cos(2x) and

y′′−2y′+5y =
(
−4ex sin(2x)−3ex cos(2x)

)
(
−2ex sin(2x)+ ex cos(2x)

)
(−2)

+5ex cos(2x)

= (−4+4)ex sin(2x)+(−3−2+5)(ex cos(2x)) = 0.

11.C. Euler’s identity: eiθ = cosθ+ isinθ.
We started the section by observing that the basic solutions of a linear homoge-

neous Differential Equation with constant coefficients, that is

(11.2.1) any(n)+an−1y(n−1)+ · · ·+a1y′+a0y = 0,

where the a j are real numbers, are exponential functions of the form y = erx. All
of a sudden, Trig functions made an appearance. It is reasonable to ask how Trig
functions are related to exponential functions. The answer is supplied by Euler’s
identity

(11.2.2) eiθ = cosθ+ isinθ.

Once one has Euler’s identity, then one knows that

e(a+bi)x = eaxe(bx)i = eax(cos(bx)+ isin(bx))
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and
e(a−bi)x = eaxe(−bx)i = eax(cos(bx)− isin(bx)).

So, in particular, if a+bi is a root of the characteristic equation

anrn +an−1rn−1 + · · ·+a1r+a0 = 0,

then a−bi is also a root of the characteristic equation; hence,

eax(cos(bx)+ isin(bx)) and eax(cos(bx)− isin(bx))

both are solutions of 11.2.1; hence
eax(cos(bx)+ isin(bx))+ eax(cos(bx)− isin(bx))

2
= eax cos(bx)

and
eax(cos(bx)+ isin(bx))− eax(cos(bx)− isin(bx))

2i
= eax sin(bx)

are solutions of 11.2.1.
Euler’s identity is a quick consequence of Taylor’s series:11

ez = 1+ z+
z2

2!
+

z3

3!
+

z4

4!
+

z5

5!
+ . . . ,

cos(z) = 1− z2

2!
+

z4

4!
− . . . ,

sin(z) = z− z3

3!
+

z5

5!
+ . . . ,

for all complex numbers z. It follows that

eiθ = 1+(iθ)+
(iθ)2

2!
+

(iθ)3

3!
+

(iθ)4

4!
+

(iθ)5

5!
+ . . .

= 1− θ2

2!
+

θ4

4!
−·· ·+ i

(
θ− θ3

3!
+

θ5

5!
+ . . .

)
= cosθ+ isinθ.

11In fact, I think that one studies Taylor’s series in second semester calculus in order to make
Euler’s identity make sense to you in Differential Equations.
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12. SECTION 3.4 SPRING PROBLEMS.

Consider a spring with one end attached to a wall and the other end attached to
a mass m which is sitting on a level surface. The spring constant is k. Assume that
resistance is proportional to velocity. Let x(t) be the displacement of the spring
from its rest position. Give the Differential Equation for x(t).

There is a picture of the setup on the next page.
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We are looking for a Differential Equation that determines x(t). We use F = ma.
There are two forces acting on the spring:

• the force of the spring and
• resistance

Hooke’s Law says that the force exerted by the spring is proportional to and in
the opposite direction. So the Spring force is −kx.

We have assumed that resistance is proportional to velocity. So the resistance
force is −cx′.

Thus in this situation, Newton’s Second Law of Motion, F = ma, becomes

mx′′ =−cx′− kx

or mx′′+cx′+kx = 0, with all three coefficients m, c, and k positive. Of course, this
is a second order homogeneous Differential Equation with constant coefficients. So
there are three possibilities for the solution; either:

• x(t) = c1er1t + c2er2t ,or
• x(t) = ert(c1 + tc2), or
• x(t) = eat(c1 sinbt + c2 cosbt)

(In each case the r1, r2, r, and a is negative.) In the first two cases, the graph looks
basically looks like x = cert with r negative. The third case can be transformed
into x = Aeatcos(ωt −α). The graph bounces back and forth between x = Aeat and
x =−Aeat . This third case is the typical behavior of a spring from our observations.

There are pictures on the next page.
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12.A. We transform c1 cos(bt)+ c2 sin(bt) into Acos(ωt −α).
Recall that cos(θ−φ) = cosθcosφ+ sinθsinφ. You might remember this iden-

tity from your Trig class or maybe a calculus class; but now you have a powerful
new way to understand (and remember) this identity. Use Euler’s identity (and
multiplication of complex numbers) to see that

cos(θ−φ)+ isin(θ−φ) = ei(θ−φ) = eiθei(−φ)

=
(

cos(θ)+ isin(θ)
)(

cos(−φ)+ isin(−φ)
)

=
(

cos(θ)+ isin(θ)
)(

cos(φ)− isin(φ)
)

=
(

cos(θ)cos(φ)+ sin(θ)sin(φ)
)
+ i
(

sin(θ)cos(φ)− cos(θ)sin(φ)
)
.

Equate the real part of the expression at the beginning with the real part of the ex-
pression at the end and equate the imaginary part of the expression at the beginning
with the imaginary part of the expression at the end to see that

cos(θ−φ) = cos(θ)cos(φ)+ sin(θ)sin(φ)

sin(θ−φ) = sin(θ)cos(φ)− cos(θ)sin(φ)

We wanted the first formula, but we got the second one for free.

At any rate, we want to write

(cos(bt))c1 +(sin(bt))c2

in the form

Acos(bt −α) = A
(

cos(bt)cos(α)+ sin(bt)sin(α)
)

If it made sense, we would pick α with cos(α) = c1 and sin(α) = c2. Of course,
this does not make sense because the distance from to origin to the point

(cos(α),sin(α))

is 1 and the distance from the origin to (c1,c2) is what ever it is. But this thought
gives us the right idea. We should think about the triangle with

ADJ = c1, OP = c2, and HYP =
√

c2
1 + c2

2.
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Let α = arccos
(

c1√
c2

1+c2
2

)
and A =

√
c2

1 + c2
2. Observe that

(cos(bt))c1 +(sin(bt))c2

=
√

c2
1 + c2

2

cos(bt))
c1√

c2
1 + c2

2

+(sin(bt))
c2√

c2
1 + c2

2


=
√

c2
1 + c2

2

(
cos(bt)cos(α)+ sin(bt)sin(α)

)
= Acos(bt −α).

Example. (This is number 20 from section 3.4.) Solve the Initial Value Problem

2x′′+16x′+40x = 0, x(0) = 5, x′(0) = 4.

Put the answer in the form

x(t) = Aeat cos(bt −α)

if this makes sense.

We get to work. It does no harm to divide both sides of the Differential Equation
by 2. We study

x′′+8x′+20x = 0.

The characteristic equation is

r2 +8r+20 = 0.

Use the quadratic formula to see that the roots of the characteristic equation are

r =
−b±

√
b2 −4ac

2a
,

where a = 1, b = 8, and c = 20. Thus, the roots of the characteristic equation are

r =
−8±

√
64−80

2
=

−8±4i
2

=−4±2i.

So the general solution of the DE is

x = e−4t(c1 cos(2t)+ c2 sin(2t)).

We compute

x′ = e−4t(−2c1 sin(2t)+2c2 cos(2t))−4e−4t(c1 cos(2t)+ c2 sin(2t))

Plug in t = 0 to see that

5 = x(0) = c1 and 4 = x′(0) = 2c2 −4c1.

It follows that c1 = 5 and c2 = 12. Thus,

x(t) = e−4t
((

cos(2t)
)
5+
(

sin(2t)
)
12
)
.
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Recall that
√

52 +122 = 13. So

x(t) = 13e−4t
((

cos(2t)
) 5

13 +
(

sin(2t)
)12

13

)
.

Let α = arccos 5
13 . We have found that

x(t) = 13e−4t(cos(2t − arccos 5
13) .



MATH 242, SPRING 2025 59

13. SECTION 3.5: THE METHOD OF THE UNDETERMINED COEFFICIENT.

In this section we describe a method for finding a particular solution for

a0y(n)+a1y(n−1)+ · · ·+an−1y′+any = q(x),

where the ai’s are constants.
The method is called “The method of the undetermined coefficient”. One guesses

the form of the solution and adjusts the constants.

Example. Find one particular solution for Differential Equations (a), (b), (c), and
(d). Find the general solution of (e).

(a) y′′+2y′−3y = 6x
(b) y′′+2y′−3y = 2sin2x
(c) y′′+2y′−3y = e2x

(d) y′′+2y′−3y = ex

(e) y′′−4y′+4y = xe2x

(a) We try y = Ax+B. Observe that if y = Ax+B, then y′ = A, y′′ = 0, and

y′′+2y′−3y = 6x

if and only if
0+2A−3(Ax+B) = 6x.

Rewrite the most recent equation as

(−3A)x+(2A−3B) = 6x.

Our y satisfies the DE provided

−3A = 6 and 2A−3B = 0.

We take A =−2 and B = −4
3 . One particular solution of (a) is ypartic =−2x− 4

3 .

(b) We try y = Asin2x+Bcos2x. If y = Asin2x+Bcos2x, then

y′ = 2Acos2x−2Bsin2x

and
y′′ =−4Asin2x−4Bcos2x.

We see that y′′+2y′−3y = 2sin2x if and only if

(−4Asin2x−4Bcos2x)+2(2Acos2x−2Bsin2x)−3(Asin2x+Bcos2x)= 2sin2x.

Rewrite the most recent equation as

(−4A−4B−3A)sin2x+(−4B+4A−3B) = 2sin2x.

Our y satisfies the DE provided

−7A−4B = 2 and 4A−7B = 0.
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I will write this system of equations as a matrix equation and multiply by the inverse
matrix.

(13.0.1)
[
−7 −4
4 −7

][
A
B

]
=

[
2
0

]
The inverse of [

a b
c d

]
is

1
ad −bc

[
d −b
−c a

]
.

I multiply both sides (13.0.1) on the left by

1
49+16

[
−7 4
−4 −7

]
to obtain

1
65

[
−7 4
−4 −7

][
−7 −4
4 −7

][
A
B

]
=

1
65

[
−7 4
−4 −7

][
2
0

]
.

This equation gives [
A
B

]
=

1
65

[
−14
−8

]
.

We conclude that one particular solution of (b) is ypartic =
−14
65 sin2x− 8

65 cos2x.

(c) We look for a particular solution of y′′+ 2y′− 3y = e2x. We try y = Ae2x. We
compute y′ = 2Ae2x and y′′ = 4Ae2x. The function y = Ae2x is a solution of

y′′+2y′−3y = e2x

provided
4Ae2x +2(2Ae2x)−3Ae2x = e2x

5Ae2x = e2x

We have calculated that if A = 1
5 , then y = Ae2x is a solution of

y′′+2y′−3y = e2x.

We conclude that

y = 1
5e2x is a solution of y′′+2y′−3y = e2x.

(d) We look for a particular solution of y′′+ 2y′− 3y = ex. We try y = Aex. We
compute y′ = Aex and y′′ = Aex. The function y = Aex is a solution of

y′′+2y′−3y = ex

provided
Aex +2Aex −3Aex = ex.

The most recent equation is 0 = ex. Of course this does not ever happen. We
conclude that y = Aex is never a solution of y′′+2y′−3y = ex. Of course,
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y= Aex is never a solution of y′′+2y′−3y= ex because y= Aex is always a solution
of y′′ + 2y′ − 3y = 0. Hmm. So what should we do? We remember that when
a characteristic polynomial has a factor x− r of multiplicity two, we found “the
missing” solution of the corresponding Homogeneous Linear DE by considering
y = xerx. Let us try the same trick here. Let us see if there exists a constant A
with y = Axex a solution of y′′+ 2y′− 3y = ex. We compute y′ = Axex +Aex and
y′′ = Axex +2Aex. The function y = Axex is a solution of

y′′+2y′−3y = ex

provided

(Axex +2Aex)+2(Axex +Aex)−3(Axex) = ex.

This is the same as

(A+2A−3A)xex +(2A+2A)ex = ex

or

4Aex = ex.

We conclude that

y = 1
4xex is a solution of y′′+2y′−3y = ex.

(e) We look for general solution of y′′−4y′+4y = xe2x.
The characteristic polynomial is r2 −4r+4 = (r−2)2. So, the general solution

of the homogeneous problem y′′−4y′+4y = 0 is y = c1e2x + c2xe2x.
If we were trying to find a particular solution for y′′−4y′+4y = e2x, it would not

make sense to look for a solution of the form y = Ae2x, because all such functions
are solutions of the homogeneous problem y′′− 4y′+ 4y = 0. Similarly, it would
not make sense to look for a particular solution for y′′−4y′+4y = e2x of the form
y = Axe2x, because all such functions are solutions of the homogeneous problem
y′′− 4y′+ 4y = 0. It would make sense to look for a particular solution for y′′−
4y′+4y = e2x of the form y = Ax2e2x.

In fact, we want a particular solution of y′′− 4y′+ 4y = xe2x. It does not make
sense to look for a solution of the form y=Ae2x, or y=Axe2x, or y=Ax2e2x because
these functions all satisfy some other differential equation. It does make sense to
look for a solution of the form y = Ax3e2x. So, lets do it!!

Take y = Ax3e2x. Calculate

y′ = (2Ax3 +3Ax2 )e2x

y′′ = (4Ax3 +12Ax2 +6Ax)e2x

Thus y = Ax3e2x is a solution of y′′−4y′+4y = xe2x provided

(4Ax3 +12Ax2 +6Ax)e2x −4(2Ax3 +3Ax2)e2x +4Ax3e2x = xe2x.
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The most recent equation is

A
(
(4−8+4)x3 +(12−12)x2 +6x

)
e2x = xe2x

or
6Axe2x = xe2x.

We have calculated that y = 1
6x3e2x is a particular solution of y′′− 4y′+ 4y = xe2x

and

y = c1e2x + c2xe2x + 1
6x3e2x is the general solution of y′′−4y′+4y = xe2x.
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14. SECTION 7.1: LAPLACE TRANSFORMS

Why? One can use Laplace Transforms to solve Initial Value Problems. Laplace
Transforms are especially good for solving Initial Value Problems of the form

mx′′+ cx′+ kx = f (t)
x(0) = x0

x′(0) = v0

where f (t) is piece-wise continuous, or continuous and piece-wise differentiable.
There is a picture of a piece-wise continuous function on the next page. There

is also a picture of a continuous, but piece-wise differentiable, function on the next
page.
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What? If f (t) is a function, then L ( f ) is a new function F in a new variable s:
L ( f ) = F(s) with

(14.0.1) L ( f (t)) =
∫

∞

0
e−st f (t)dt.

Here is the plan for section 7.1.

(1) We fill in the chart

f L ( f ) = F(s) restriction on s
1

eat

t
sin(at)
cos(at)

(2) We do problem 8 from 7.1. That is, we calculate L ( f ) for

f (t) =


0 for 0 ≤ t ≤ 1
1 for 1 < t ≤ 2
0 for 2 < t.

There is a picture of f (t) on the next page.
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(3) We do problem 18 from 7.1. That is, we calculate L ( f ) for

f (t) = sin(3t)cos(3t).

(4) (a) Find f (t) with L ( f ) = F(s) with F(s) = 1
s+5 .

(b) Find f (t) with L ( f ) = F(s) with F(s) = 3s+1
s2+4 .

Calculation 14.1. We calculate

L (1) =
∫

∞

0
e−st f (t)dt =

∫
∞

0
e−stdt = lim

w→∞

−1
s

e−st
∣∣∣w
0
= lim

w→∞

(−1
s

e−sw +
1
s

)
.

Observe that if 0 < s, then lim
w→∞

e−sw = 0. Thus,

L (1) =
1
s

, provided 0 < s.

Calculation 14.2. We calculate

L (eat) =
∫

∞

0
e−st f (t)dt =

∫
∞

0
e−steatdt =

∫
∞

0
e−(s−a)tdt = lim

w→∞

−1
s−a

e−(s−a)t
∣∣∣w
0

= lim
w→∞

( −1
s−a

e−(s−a)w +
1

s−a

)
.

Observe that if a < s, then lim
w→∞

e−(s−a)w = 0. Thus,

L (eat) =
1

s−a
, provided a < s.

Remark. Of course, Calculation 14.1 is the special case of Calculation 14.2 where
a where is taken to be zero.

Calculation 14.3. We calculate

L (t) =
∫

∞

0
e−st f (t)dt =

∫
∞

0
e−sttdt.

We use integration by parts which says that∫
udv = uv−

∫
vdu.

Take u = t and dv = e−stdt. Calculate du = dt and v = 1
−se−st . It follows that∫

e−sttdt =
t
−s

e−st −
∫ 1

−s
e−stdt =

t
−s

e−st − 1
s2 e−st .

It follows that

L (t) = lim
w→∞

[
t
−s

e−st − 1
s2 e−st

]w

0

= lim
w→∞

[
w
−s

e−sw − 1
s2 e−sw −0+

1
s2

]
Notice that if 0 < s, then lim

w→∞
we−sw = 0 and lim

w→∞
e−sw = 0. We conclude that

L (t) =
1
s2 , provided 0 < s
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Remark. Calculation 14.3 was amazingly complicated. We will introduce the
Gamma function to calculate the Laplace Transform of other powers of t by way
of trickery. Speaking of trickery, the integral of e−st sin(at) (with respect to t) is
doable but very unpleasant. (Maybe you remember this integral from second se-
mester calculus). So we use Euler’s identity to write sin(at) in terms of (complex)
exponential functions. This is a brilliant idea because it is easy to compute the
Laplace Transform of an exponential function. Indeed, if a is a complex number
L (eat) = 1

s−a provided s is greater than the real part of a.

Calculation 14.4. We compute L (sin(at)). Recall that

eati = cos(at)+ isin(at)

e−ati = cos(at)− isin(at)

Thus,

eati − e−ati

2i
= sin(at).

It follows that

L (sin(at)) = L

(
eati − e−ati

2i

)

It is easy to see that L (a f + bg) = aL ( f )+ bL (g) where a and b are constants
and f and g are functions.

=
1
2i

(
L (eait)−L (e−ait)

)
=

1
2i

( 1
s−ai

− 1
s+ai

)
=

1
2i

(s+ai− (s−ai)
(s−ai)(s+ai)

)
=

1
2i

( 2ai
s2 +a2

)
=

a
s2 +a2 ,

provided s is larger than the real part of ai. In other words,

L (sin(at)) =
a

s2 +a2 , provided 0 < s.
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Calculation 14.5. We compute

L (cos(at)) = L (eati − isin(at))

= L (eati)− iL (sin(at))

=
1

s−ai
− ia

s2 +a2

=
s+ai

s2 +a2 −
ia

s2 +a2

=
s

s2 +a2 .

L (cos(at)) =
s

s2 +a2 , provided 0 < s.

We can now fill in the chart from (1) on page 65

(14.5.1)

f L ( f ) = F(s) restriction on s
1 1

s 0 < s
eat 1

s−a a < s
t 1

s2 0 ≤ s
sin(at) a

s2+a2 0 ≤ s
cos(at) s

s2+a2 0 ≤ s

• Now we look at item (2) from page 65.
We compute L ( f (t)) for

f (t) =


0 for 0 ≤ t ≤ 1
1 for 1 < t ≤ 2
0 for 2 < t.

To do this, we just follow our noses. Recall from (14.0.1) on page 65 that

L ( f (t)) =
∫

∞

0
e−st f (t)dt.

It follows that for the f (t) of this problem,

L ( f (t)) =
∫

∞

0
e−st f (t)dt =


∫ 1

0 e−st f (t)dt
+
∫ 2

1 e−st f (t)dt
+
∫

∞

2 e−st f (t)dt

=


∫ 1

0 e−st0dt
+
∫ 2

1 e−st1dt
+
∫

∞

2 e−st0dt

=
∫ 2

1
e−stdt =

1
−s

e−st
∣∣∣2
1
=

1
−s

(e−2s − e−s).

• Now we look at item (3) from page 67.
We compute L (sin(3t)cos(3t)). Recall that sin(2θ) = 2sin(θ)cos(θ). (Maybe

you remember this from Trig or Calculus. If not, get it from Euler’s Identity as we
did in section 12.A on page 55.)



70 MATH 242, SPRING 2025

Use the trig identity (with θ replaced by 3t) and the Table 14.5.1 from page 69 to
see that

sin(2θ) = 2sin(θ)cos(θ);

hence
sin(6t) = 2sin(3t)cos(3t).

It follows that

L (sin(3t)cos(3t)) = L

(
sin(6t)

2

)
=

1
2
L (sin(6t)) =

1
2

6
s2 +36

=
3

s2 +36
.

• Now we look at item (4) from page 67.

(a) Find f (t) with L ( f ) = F(s) with F(s) = 1
s+5 .

(b) Find f (t) with L ( f ) = F(s) with F(s) = 3s+1
s2+4 .

Look at Table 14.5.1 on page 69

L (eat) =
1

s−a
.

Take a =−5 to see that

L (e−5t) =
1

s+5
.

So,

L −1
(

1
s+5

)
= e−5t .

Look at Table 14.5.1 on page 69

L (sin(at)) =
a

s2 +a2 and L (cos(at)) =
s

s2 +a2 .

It follows that

L −1(
3s+1
s2 +4

) = 3L −1(
s

s2 +4
)+

1
2
L −1(

2
s2 +4

) = 3cos(2t)+
1
2

sin(2t).
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15. SECTIONS 7.2 AND 7.3: WE USE LAPLACE TRANSFORMS TO SOLVE

INITIAL VALUE PROBLEMS.

We have calculated
f L ( f )
1 1

s
eat 1

s−a
t 1

s2

sinat a
s2+a2

cosat s
s2+a2

I distributed the Laplace Transform facts that I will give you when you take the final.
There are a few copies up front if you want another one. They are also available on
the class website.

Today’s agenda:

• There are three facts in these sections.
• Use Laplace transforms to solve x′′+ 4x = sin2t, x(0) = x′(0) = 0. Use

HW 31 in 7.2.
• Find L (t sinkt) (Ex 5 in 7.2 in the book.)
• Find L (t coskt) (HW 28 in 7.2)
• Find L −1

(
2s−3

9s2−12s+20

)
(7.3/10)

• Use Laplace transforms to solve x′′+6x′+18x = cos2t, x(0) = 1, x′(0) =
−1.

• Γ(x) from 7.1
• Why the three facts are true.

Fact 15.1. L ( f ′) = sL ( f )− f (0)

Fact 15.2. L −1
(

F(s)
s

)
=

∫ t

0
[L −1(F(s))]

∣∣∣
τ

dτ.

Fact 15.3. If L ( f (t)) = F(s), then L (eat f (t)) = F(s−a)

Example. Use Laplace transform and the result of Homework problem 31 in sec-
tion 7.2 to solve the Initial Value Problem

x′′+4x = sin(2t), x(0) = x′(0) = 0.

Let X = L (x). Apply Fact 15.1 to see that

L (x′) = sX and L (x′′) = s2X .

We calculated L (sin(2t)) = 2
s2+4 in Table 14.5.1. Apply L to x′′+4x = sin(2t) to

obtain

s2X +4X =
2

s2 +4
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(s2 +4)X =
2

s2 +4

X =
2

(s2 +4)2 .

In Homework problem 31, you will calculate that

(15.3.1) L −1
(

1
(s2 + k2)2

)
=

1
2k3 (sin(kt)− kt cos(kt)).

In the present problem,

x = L −1(X) = 2L −1
(

1
(s2 +4)2

)
.

Apply Homework problem 31 with k = 2 to see that

x = 2
1

2(8)
(sin(2t)−2t cos(2t)).

The solution of the Initial Value Problem is

x(t) = 1
8 sin(2t)− 1

4t cos(2t).

Check. We compute

x′(t) = 1
4 cos(2t)− 1

4 cos(2t)+ 1
2t sin(2t) = 1

2t sin(2t)

x′′(t) = 1
2 sin(2t)+ t cos(2t)

We see that

x′′+4x = (1
2 sin(2t)+ t cos(2t))+4(1

8 sin(2t)− 1
4t cos(2t))

= (
1
2
+

1
2
)sin(2t)+ cos(2t)− cos(2t) = sin(2t) .

x(0) = 1
8 sin(0)− 1

40(cos(0)) = 0

x′(0) = 1
20(sin(0)) = 0

Remark. Problem 31 is easy once one knows

(a) L (t cos(kt)) = s2−k2

(s2+k2)2 and

(b) L (sin(kt)) = k
s2+k2 .

Of course, we know (b). Indeed, this result is in Table 14.5.1. One uses trickery to
get (a). This is problem 28. I did not assign 28; but I will do it in a minute. The trick
for problem 28 is the same as the trick in Example 5 in the text book. So here is the
plan. I will do Example 5 from the text book. Then I will do homework problem
28. I leave you with problem 31. (But you don’t have to do any heavy lifting.)
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Example 15.4. We compute L (t sin(kt)). I do not want to compute

L (t sin(kt)) =
∫

∞

0
e−stt sin(kt)dt

directly. It looks much too hard. On the other hand, if f (t) = t sin(kt), then

f ′′(t) =− f (t)+ some more stuff;

so
L ( f ′′(t)) =−L ( f (t))+L (some more stuff)

and Fact 15.1 tells us how L ( f ′′(t)) is related to L ( f (t)). If we are lucky, when
can solve the equation

L ( f (t))+L (whatever) =−L ( f (t))+L (some more stuff)

in order to find L ( f (t)).

We get to work. If f (t) = t sin(kt), then

f ′(t) = kt cos(kt)+ sin(kt)

and
f ′′(t) =−k2t sin(kt)+2k cos(kt).

Read the most recent line as

(15.4.1) f ′′(t) =−k2 f (t)+2k cos(kt).

Recall from Fact 15.1 that

L ( f ′) = sL ( f )− f (0)

For us, f (0) = 0 and L ( f ′) = sL ( f ). Similarly,

L ( f ′′) = sL ( f ′)− f ′(0)

with f ′(0) = 0. Thus,

L ( f ′′) = sL ( f ′)− f ′(0) = s2L ( f )

Apply L to both sides of (15.4.1) to obtain

(15.4.2) s2L ( f ) =−k2L ( f )+2kL (cos(kt)).

We know L (cos(kt)) = s
s2+k2 . Solve equation (15.4.2) for L ( f ). Conclude

L (t sin(kt)) =
2ks

(s2 + k2)2 .

Example. We use the trick of Example 15.4 to find L (t cos(kt)). Let

f (t) = t cos(kt).

Compute
f ′(t) =−kt sin(kt)+ cos(kt)
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and

(15.4.3) f ′′(t) =−k2t cos(kt)−2k sin(kt).

Apply Fact 15.1 to see that

L ( f ′(t)) = sL ( f (t))− f (0) = sL ( f (t))

L ( f ′′(t)) = sL ( f ′(t))− f ′(0) = s2L ( f (t))−1

Rewrite equation (15.4.3) as

f ′′(t) =−k2 f (t)−2k sin(kt)

and apply L to both sides

s2L ( f (t))−1 =−k2L ( f (t))−2kL (sin(kt)).

Use Table 14.5.1 and solve for L ( f (t)) to obtain

(s2 + k2)L ( f (t)) = 1−2k
k

(s2 + k2)

L ( f (t)) =
1

s2 + k2 −
2k2

(s2 + k2)2

L ( f (t)) =
s2 − k2

(s2 + k2)2 .

Conclude

L (t cos(kt)) =
s2 − k2

(s2 + k2)2 .

Example. Find L −1
(

2s−3
9s2−12s+20

)
.

One might hope to factor the denominator and then apply the technique of partial
fractions as was done in Example 15.5 on page 82. Unfortunately, the denominator
does not factor (over the real numbers) because b2 − 4ac = (12)2 − 4(9)(20) < 0.
Instead, we complete the square because we can use Fact 15.3 and Table 14.5.1 to
compute

L −1
(

1
(s−a)2 + k2

)
and L −1

(
s−a

(s−a)2 + k2

)
.
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We get to work.

L −1
(

2s−3
9s2 −12s+20

)
= L −1

(
2s−3

9(s2 − 4
3s)+20

)

= L −1

(
2s−3

9(s2 − 4
3s+ 4

9)+20−9(4
9)

)

= L −1

(
2s−3

9(s− 2
3)

2 +16

)

= L −1

(
2(s− 2

3 +
2
3)−3

9(s− 2
3)

2 +16

)

=
2
9
L −1

(
(s− 2

3)

(s− 2
3)

2 + 16
9

)
+L −1

(
−5

3

9(s− 2
3)

2 +16

)

=
2
9
L −1

(
(s− 2

3)

(s− 2
3)

2 + 16
9

)
+

1
9

(
−5

3

)
3
4
L −1

(
4
3

(s− 2
3)

2 + 16
9

)
= 2

9e
2
3 t cos(4

3t)− 5
36e

2
3 t sin(4

3t).

We conclude that

L −1
(

2s−3
9s2−12s+20

)
= 2

9e
2
3 t cos(4

3t)− 5
36e

2
3 t sin(4

3t).

If you care, this is problem 10 in section 7.3.

Example. Use Laplace transforms to solve the Initial Value Problem

x′′+6x′+18x = cos2t, x(0) = 1, x′(0) =−1.

Let L (x) = X . Compute (using Fact 15.1 and Table 14.5.1)

L (x′) = sX −1

L (x′′) = s(sX −1)+1 = s2X − s+1

L (cos(2t)) =
s

s2 +4
Apply L to the original Differential Equation to obtain

(s2X − s+1)+6(sX −1)+18X =
s

s2 +4

(s2 +6s+18)X − s−5 =
s

s2 +4

X =
s

(s2 +4)(s2 +6s+18)
+

s+5
s2 +6s+18

.
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We apply the technique of partial fractions to
s

(s2 +4)(s2 +6s+18)
.

Before some one “cleaned this expression up”, it looked like
s

(s2 +4)(s2 +6s+18)
=

A+Bs
s2 +4

+
C+Ds

s2 +6s+18

for some constants A, B, C, and D. Multiply both sides by (s2 +4)(s2 +6s+18) to
see that

s = (A+Bs)(s2 +6s+18)+(C+Ds)(s2 +4).

We “equate the corresponding coefficients” in order to find A, B, C and D. (In other
words, the left side is a polynomial in the variable s with real number coefficients
and the right side is a polynomial in the variable s with real number coefficients.
These two polynomials are the same polynomial; so the constant term on the left
(which is zero) is equal to the constant term on the right; the coefficient of s on the
left (which is 1) is equal to the coefficient of s on the right. At any rate, we “equate
the corresponding coefficients” in order to find A, B, C and D.)

s = s3(B+D)+ s2(6B+A+C)+ s(18B+6A+4D)+18A+4C

Thus, 
0 = B+D
0 = 6B+A+C
1 = 18B+6A+4D
0 = 18A+4C

The top equation gives D =−B. The bottom equation gives C =−9
2A, The middle

two equations yield {
0 = 6B+A− 9

2A
1 = 18B+6A−4B{

7
2A = 6B
1 = 18B+6(2

7)6B−4B

Thus, 1 = (14+ 72
7 )B or 7

170 = B. It follows that

A = 6(2
7)(

7
170) =

6
85 ,

C =−(9
2)A =−(9

2)
6

85 = −54
170 .

D =−B = −7
170 .

Thus,
x = L −1(X)

= L −1
(

A+Bs
s2 +4

+
C+Ds

s2 +6s+18
+

s+5
s2 +6s+18

)
=

1
170

L −1
(

12+7s
s2 +4

+
−54−7s

s2 +6s+18
+

170s+5(170)
s2 +6s+18

)
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Observe that s2 +6s+18 = (s+3)2 +9.

=
1

170

[
6L −1

(
2

s2 +4

)
+7L −1

(
s

s2 +4

)
+L −1

(
163(s+3)+5(170)−54− (163)3

(s+3)2 +9

)]
Observe that 5(170)−54− (163)3 = 307.

=
1

170

[
6sin(2t)+7cos(2t)+163e−3t cos(3t)+

307
3

e−3t sin(3t)
]
.

This is problem 38 in section 7.3 in the textbook.

• Now we look at the Gamma function, Γ(x).

a Define Γ(x).
b Compute Γ(1).
c Find Γ(x+1) in terms of Γ(x).
d Find Γ(2),Γ(3),Γ(4), . . . .
e Find L (ta).
f Find Γ(1

2).

• We do (a). The Gamma function is defined to be

(15.4.4) Γ(x) =
∫

∞

0
e−ttx−1dt, for 0 < x

• We do (b). Observe that

Γ(1) =
∫

∞

0
e−tt1−1dt =

∫
∞

0
e−tdt = lim

w→∞
−e−t

∣∣∣w
0
= lim

w→∞
−e−w +1 = 1.

We conclude that Γ(1) = 1 .

• We do (c). Observe that

Γ(x+1) =
∫

∞

0
e−ttxdt.

Use Integration by Parts, which is∫
udv = uv−

∫
vdu.

Take u = tx and dv = e−tdt. Compute du = xtx−1dt and v =−e−t . The integration
by parts formula yields∫

e−ttxdt =−txe−t + x
∫

e−ttx−1dt.

Thus ∫
∞

0
e−ttxdt = lim

w→∞
−txe−t

∣∣∣w
0
+ x

∫
∞

0
e−ttx−1dt

= lim
w→∞

−wxe−w +0we−0 + xΓ(x) = xΓ(x).

We conclude that Γ(x+1) = xΓ(x) .
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• We do (d). Observe that

Γ(2) = 1Γ(1) = 1(1) = 1.

Observe that
Γ(3) = 2Γ(2) = 2(1) = 2.

Observe that
Γ(4) = 3Γ(3) = 3(2) = 3!.

Observe that
Γ(5) = 4Γ(3) = 4(3!) = 4!.

We conclude that Γ(n+1) = n! for positive integers n .

• We do (e) Observe that

L (ta) =
∫

∞

0
e−sttadt.

Let u = st. It follows that du = sdt. If t = 0, then u = 0. If t goes to ∞, then u goes
to ∞. Thus

L (ta) =
∫

∞

0
e−u(u

s )
a du

s = 1
sa+1

∫
∞

0 e−uuadu = 1
sa+1 Γ(a+1)

(because Γ(a+1) =
∫

∞

0 e−tta dt.) We conclude that

L (ta) =
1

sa+1 Γ(a+1).

• We do (f). Observe that

Γ(1
2) =

∫
∞

0 e−tt−1/2dt.

Let u = t1/2. It follows that du = (1/2)t−1/2dt. When t = 0, then u is also zero. As
t goes to infinity, then u also goes to ∞. Thus,

(15.4.5) Γ(1
2) = 2

∫
∞

0 e−u2
du.

None of us know an anti-derivative for e−u2
; but we can use trickery to calculate

this integral. Possibly, you remember from third semester calculus that it is possible
to integrate some definite integrals of the form∫∫

region
e−x2−y2

dxdy

by doing the integral in polar coordinates. We use those tricks here!
We calculate

∫
∞

0 e−u2
du. Later on we will plug our answer back into (15.4.5) in

order to read the value of Γ(1
2).∫
∞

0
e−u2

du

=

√(∫
∞

0
e−u2du

)2
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=

√(∫
∞

0
e−x2dx

)(∫
∞

0
e−y2dy

)
The expression

∫
∞

0 e−y2
dy is a number. I can move that number inside the integral∫

∞

0 e−x2
dx if that makes me happy.

=

√∫
∞

0
e−x2

(∫
∞

0
e−y2dy

)
dx

In the integral
∫

∞

0 e−y2
dy, y is the variable. The value of x has nothing to do with y.

If it amuses me, I can move e−x2
, which is a constant as far as y is concerned, inside

the integral
∫

∞

0 e−y2
dy.

=

√∫
∞

0

∫
∞

0
e−x2e−y2dydx

The most recent integral is the double integral over the first quadrant of e−x2−y2
.

None of use can do that integral in rectangular coordinates. But it is easy, if we
turn it into an integral in polar coordinates. The first quadrant in polar coordinates
is 0 ≤ r ≤ ∞ and 0 ≤ θ ≤ π

2 . The sneaky thing about the switch from rectangular
coordinates to polar coordinates is that dxdy becomes r dr dθ

=

√∫
π/2

0

∫
∞

0
re−r2dr dθ

Do a substitution if you like. Let u =−r2, then du =−2rdr. I just did the integral
in my head. My answer is right because d

dr (
−1
2 e−r2

) = re−r2
.

=

√∫
π/2

0

(
lim

w→∞

−1
2

e−r2
∣∣∣w
0

)
dθ

=

√∫
π/2

0

(
lim

w→∞

−1
2

e−w2
+

1
2

)
dθ

=

√∫
π/2

0

1
2

dθ =

√
π

4
=

√
π

2

Now we see from (15.4.5) that

Γ(1
2) = 2

∫
∞

0 e−u2
du = 2

√
π

2 =
√

π.

We conclude that Γ(1
2) =

√
π.

Reason for Fact 15.1. Observe that

L ( f ′) =
∫

∞

0
e−st f ′(t)dt.
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Apply Integration by Parts (
∫

udv = uv−
∫

vdu) with u = e−st and dv = f ′(t)dt.
Compute du =−se−stdt and v = f (t). It follows that

L ( f ′) = lim
w→∞

e−st f (t)
∣∣∣w
0
+ s

∫
∞

0
e−st f (t)dt

= lim
w→∞

e−sw f (w)− f (0)+ sL ( f ) = sL ( f )− f (0).
□

Reason for Fact 15.2. Let F(s) = L ( f (t)) and let g(t) =
∫ t

0 f (τ)dτ. Apply the
Fundamental Theorem of Calculus to see that

g′(t) = f (t).

Observe that

F(s) = L ( f (t))

= L (g′(t))

= sL (g(t))−g(0) by Fact 15.1

= sL
(∫ t

0
f (τ)dτ

)
−0

= sL
(∫ t

0

(
L −1(F(s))

)∣∣∣
τ

dτ

)
Divide both sides by s. Apply L −1 to each side. Obtain

L −1
(

F(s)
s

)
=

∫ t

0

(
L −1(F(s))

)∣∣∣
τ

dτ.
□

Recall Fact 15.3. If L ( f (t)) = F(s), then L (eat f (t) = F(s−a).

Reason.

L (eat f (t)) =
∫

∞

0
e−steat f (t)dt =

∫
∞

0
e−(s−a)t f (t)dt = F(s−a).

Example. Find L −1
(

1
s(s+3)

)
.

There are two ways to do the problem:

• Use the technique of partial fractions and write
1

s(s+3)
=

A
s
+

B
s+3

for some constants A and B and then use Table 14.5.1.
• Apply Fact 15.2 which says

L −1
(

F(s)
s

)
=

∫ t

0
[L −1(F(s))]

∣∣∣
τ

dτ.

If one does the partial fractions approach one multiplies both sides of
1

s(s+3)
=

A
s
+

B
s+3
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by s(s+3) to obtain
1 = A(s+3)+Bs.

Plug in s = 0 to obtain A = 1
3 . Plug in s =−3 to obtain B =−1

3 . Thus,

L −1
(

1
s(s+3)

)
=

1
3

(
L −1

(
1
s

)
−L −1s+3

)
=

1
3
(1− e−3t).

If one uses Fact 15.2, then

L −1

(
1

s+3

s

)
=

∫ t

0

[
L −1

(
1

s+3

)]∣∣∣
τ

dτ =
∫ t

0
e−3τdτ =

e−3τ

−3

∣∣∣t
0

= −1
3 (e−3t −1).

We conclude that

L −1
(

1
s(s+3)

)
=

1
3
(1− e−3t).

Example. Find L −1
(

1
s2(s2+4)

)
. Again, one can use the technique of partial frac-

tions (although more care is required when one has a double root) or one can use
Fact 15.2 twice.

I will use Fact 15.2 twice. Observe that

L −1
(

1
s2(s2 +4)

)
= L −1

( 1
s(s2+4)

s

)

=
∫ t

0

[
L −1

(
1

s(s2 +4)

)]∣∣∣∣
τ

dτ

=
∫ t

0

[∫
τ

0

[
L −1

(
1

(s2 +4)

)]∣∣∣∣
θ

dθ

]∣∣∣∣
τ

dτ

Recall from Table 14.5.1 that
[
L −1

(
1

(s2+4)

)]∣∣∣
θ

= 1
2 sin(2θ). It follows that

L −1
(

1
s2(s2 +4)

)
=

∫ t

0

[∫
τ

0

1
2

sin(2θ)dθ

]∣∣∣∣
τ

dτ

= − 1
4

∫ t

0

[
cos(2θ)

∣∣∣τ
0

]
dτ

= − 1
4

∫ t

0
(cos(2τ)−1)dτ
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= − 1
4

[
sin(2τ)

2
− τ

]∣∣∣∣t
0

= − 1
4

(
sin(2t)

2
− t
)

=
1
4

t − 1
8

sin(2t).

We conclude that L −1
(

1
s2(s2 +4)

)
=

1
4

t − 1
8

sin(2t).

Example 15.5. Use Laplace transforms to solve

x′′+8x′+15x = 0, x(0) = 2, x′(0) =−3.

To work: Let X(s) = L (x). Apply Fact 15.1 to see that

L (x′) = sL (x)− x(0) = sX −2

L (x′′) = sL (x′)− x(0′) = s(sX −2)+3 = s2X −2s+3

Apply L to x′′+8x′+15x = 0 to obtain

(s2X −2s+3)+8(sX −2)+15X = 0.

(s2 +8s+15)X −2s+3−16 = 0

X =
13+2s

s2 +8s+15
.

The denominator factors as (s+3)(s+5). Apply the technique of partial fractions.
We look for constants A and B with

13+2s
s2 +8s+15

=
A

s+3
+

B
s+5

.

Multiply both sides by (s+3)(s+5) to see that

13+2s = A(s+5)+B(s+3).

Plug in s =−3 to learn that
13−6 = A(2)

So, A = 7
2 . Plug in s =−5 to learn that

13−10 =−2B

So, B = −3
2 . It is probably a good idea to check that

13+2s
s2 +8s+15

really is equal to
7
2

s+3
+

−3
2

s+5
.

At any rate,

X =
−3

2
s+5

+
7
2

s+3
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and

x = L −1(X) =−3
2
L −1

(
1

s+5

)
+

7
2
L −1

(
1

s+3

)
=−3

2
e−5t +

7
2

e−3t .

The solution of the Initial Value Problem is

x(t) =−3
2

e−5t +
7
2

e−3t .

Check.
x(t) =−3

2
e−5t +

7
2

e−3t .

x′(t) =
15
2

e−5t − 21
2

e−3t

x′′(t) =
−75

2
e−5t +

63
2

e−3t

x′′+8x′+15x=
(
−75

2
e−5t +

63
2

e−3t
)
+8
(

15
2

e−5t − 21
2

e−3t
)
+15

(
−3

2
e−5t +

7
2

e−3t
)

=
−75+120−45

2
e−5t +

63−168+105
2

e−3t = 0

x(0) =−3
2
+

7
2
= 2

x′(0) =
15
2
− 21

2
=−3
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16. SECTION 7.4: MORE LAPLACE TRANSFORMS.

There is one definition and there are three facts in this section.

Definition 16.1. If f (t) and g(t) are functions, then the convolution of f and g is

( f ∗g)(t) =
∫ t

0
f (τ)g(t − τ)dτ.

Fact 16.2. L ( f ) ·L (g) = L ( f ∗g).

Fact 16.3. L (t f ) =− d
ds(L ( f ))

Fact 16.4. L ( f
t ) =

∫
∞

s [L ( f )]
∣∣∣
σ

dσ provided lim
t→0+

f
t is exists and is finite.

Example. Find L −1
(

s
(s2+9)(s2+4)

)
.

Method 1. We use Fact 16.2 Let f = L −1( s
(s2+9)(s2+4) . It follows that

L ( f ) =
s

(s2 +9)(s2 +4)
=

s
(s2 +9)

· 1
(s2 +4)

=
1
2
L (cos(3t)) ·L sin(2t)

=
1
2
L (cos(3t)∗ sin(2t)).

Apply L −1 to each side to see that

f =
1
2

cos(3t)∗ sin(2t) =
1
2

∫ t

0
cos(3τ)sin(2(t − τ))dτ

Recall

sin(x+ y) = sin(x)cos(y)+ cos(x)sin(y)

sin(x− y) = sin(x)cos(y)− cos(x)sin(y)

(If you do not remember these identities, they are quick consequences of the Euler
Identity; see the argument of 12.A on page 55.) Add the two formulas (and divide
by 2) to see that

sin(x+ y)+ sin(x− y)
2

= sin(x)cos(y).

Let x = 2(t − τ) and y = 3τ to see that

sin(2(t − τ))cos(3τ) =
sin(2(t − τ)+3τ)+ sin(2(t − τ)−3τ)

2

=
sin(2t + τ)+ sin(2t −5τ)

2
It now follows that

f =
1
2

∫ t

0
cos(3τ)sin(2(t − τ))dτ

=
1
2

∫ t

0

sin(2t + τ)+ sin(2t −5τ)

2
dτ
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=
1
4

∫ t

0
sin(2t + τ)+ sin(2t −5τ)dτ

=
1
4

[
−cos(2t + τ)− cos(2t −5τ)

−5

]∣∣∣∣t
0

=
1
4

[
−cos(2t + t)− cos(2t −5t)

−5
+ cos(2t)+

cos(2t)
−5

]
=

1
4

[
−cos(3t)+

cos(3t)
5

+
4cos(2t)

5

]
=

1
4

[
−4cos(3t)

5
+

4cos(2t)
5

]
= −cos(3t)

5
+

cos(2t)
5

Method 2. Use the technique of Partial Fractions. Find constants A, B, C, and D
with

s
(s2 +9)(s2 +4)

=
As+B
s2 +9

+
Cs+D
s2 +4

.

Multiply both sides by (s2 +9)(s2 +4) to obtain

s = (As+B)(s2 +4)+(Cs+D)(s2 +9)

s = s3(A+C)+ s2(B+D)+ s(4A+9C)+4B+9D

Solve the system of equations 
0 = A+C
0 = B+D
1 = 4A+9C
0 = 4B+9D

simultaneously. Observe that C =−A, B=−D, 1= 4A−9A, 0=−4D+9D. Thus,
A =−1

5 D = 0, B = 0, C = 1
5 .

L −1
(

s
(s2 +9)(s2 +4)

)
=−1

5
L −1

(
s

s2 +9

)
+

1
5
L −1

(
s

s2 +4

)
= −1

5
cos(3t)+

1
5

cos(2t) .

Example. Find L (te−t sin2 t). (This is problem 18 in section 7.4.)

We get to work. Recall from calculus that sin2 t = 1
2(1− cos(2t)). If you do not

remember this formula from calculus, it is not a big deal. Use tricks like the one in
12.A on page 55 to see that cos(2t) = cos2(t)− sin2(t). It follows that

(16.4.1) cos(2t) = (1− sin2(t))− sin2(t) = 1−2sin2(t).

Rewrite (16.4.1) as sin2 t = 1
2(1− cos(2t)).
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It follows that L (te−t sin2 t)= 1
2L (te−t(1−cos(2t))). We know L (1−cos(2t))

from Table 14.5.1 on page 69. So we know L (e−t(1−cos(2t))) from 15.3 on page
71. Use Fact 16.3 to finish the calculation.

L (te−t sin2 t)

= L
(

te−t 1
2(1− cos(2t))

)
= 1

2L
(

t(e−t − e−t cos(2t))
)

= − 1
2

d
dsL

(
e−t − e−t cos(2t)

)
= − 1

2
d
ds

[
1

s+1 −
s+1

(s+1)2+4

]
= − 1

2
d
ds

[
(s+1)2+4−(s+1)2

(s+1)((s+1)2+4)

]
= − 1

2
d
ds

[
4

(s+1)(s2+2s+5)

]
= +(1

2)4
(s+1)(2s+2)+(s2+2s+5)

(s+1)2(s2+2s+5)2

= +2 3s2+6s+7
(s+1)2(s2+2s+5)2

Example. Find L
(

et−e−t

t

)
.

We use Fact 16.4, which says that L ( f
t )=

∫
∞

s [L ( f )]
∣∣∣
σ

dσ provided lim
t→0+

f
t exists

and is finite.
Notice that

lim
t→0+

et − e−t

t
= lim

t→0+

et + e−t

1
= 2

by L’Hôpital’s rule since lim
t→0+

et − e−t = 0 and lim
t→0+

t = 0. So, we may apply Fact

16.4.
We compute

L

(
et − e−t

t

)
=

∫
∞

s
[L (et − e−t)]

∣∣∣
σ

dσ

=
∫

∞

s

(
1

σ−1
− 1

σ+1

)
dσ

= lim
w→∞

ln
∣∣∣∣σ−1
σ+1

∣∣∣∣∣∣∣∣w
s

= lim
w→∞

ln
∣∣∣∣w−1
w+1

∣∣∣∣− ln
∣∣∣∣s−1
s+1

∣∣∣∣
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Recall that lim
w→∞

w−1
w+1 = 1 and ln(1) = 0.

= − ln
∣∣∣∣s−1
s+1

∣∣∣∣
= ln

∣∣∣∣s+1
s−1

∣∣∣∣
Example. Find L −1 ln

(
s2+1

(s+2)(s−3)

)
.

My thought is that it would be easy to find L −1 of the derivative of

ln
(

s2 +1
(s+2)(s−3)

)
;

so lets use Fact 16.3, which is

L (t f ) =− d
ds

(L ( f )).

Let f = L −1 ln
(

s2+1
(s+2)(s−3)

)
. We want to find f . We first find t f . Indeed,

L (t f ) = − d
ds

(L ( f ))

= − d
ds

ln
(

s2 +1
(s+2)(s−3)

)
= −

[
2s

s2 +1
− 1

s+2
− 1

s−3

]
= L (−2cos(t)+ e−2t + e3t).

Apply L −1 to both sides and divide by t in order to conclude that

f =
−2cos(t)+ e−2t + e3t

t
.

Example. Find L −1
(

s+1
(s2+2s+5)3

)
.

It is not hard to integrate s+1
(s2+2s+5)3 . We would get something like 1

s2+2s+5
2
. We

could probably do L −1 of that. Certainly, the relevant fact is Fact 16.4 L ( f
t ) =∫

∞

s [L ( f )]
∣∣∣
σ

dσ provided lim
t→0+

f
t is exists and is finite.

I propose that we let f = L −1
(

s+1
(s2+2s+5)3

)
. Keep in mind that we want to find

f . We start by finding f
t . Of course, we know L ( f ) even though we do not yet

know f . We get to work:

L (
f
t
) =

∫
∞

s
[L ( f )]

∣∣∣
σ

dσ

=
∫

∞

s

σ+1
(σ2 +2σ+5)3 dσ
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=
−1
4

lim
w→∞

1
(σ2 +2σ+5)2

∣∣∣w
s

=
1
4

1
(s2 +2s+5)2

=
1
4

1
((s+1)2 +4)2

Recall from (15.3.1) on page 72 that L −1
(

1
(s2+k2)2

)
= 1

2k3 (sin(kt)− kt cos(kt)).
Also use Fact 15.3 on page 71.

= L
(1

4
e−t 1

2(23)
(sin(2t)−2t cos(2t))

)

Take L −1 of both sides of the equation to obtain

f
t
=

1
4

e−t 1
2(23)

(sin(2t)−2t cos(2t))

(By the way, now that we know f
t , it is clear lim

t→0+
f
t exists and is finite. So our

calculation is legal.) We conclude that

f =
1

64
te−t(sin(2t)−2t cos(2t)).

Example. Find a non-trivial solution of

tx′′− (4t +1)x′+4tx+2x = 0, x(0) = 0.

The function x(t)= 0 for all t is a solution of this homogeneous linear Differential
Equation. The instruction tells us to find a non-trivial solution; that is, we are
supposed to find another solution in addition to the trivial solution x(t) = 0 for all t.

We use the method of Laplace transforms. Let X = L (x). We compute

L (x′) = sX

L (x′′) = s2X − x′(0)

L (tx) = − d
ds

X =−X ′

L (tx′) = − d
ds

(sX) =−(sX ′+X)

L (tx′′) = − d
ds

(s2X − x′(0)) =−(s2X ′+2sX)

Apply L to the original Differential Equation to obtain

−(s2X ′+2sX)+4(sX ′+X)− sX −4X ′+2X = 0

The most recent equation is a Differential Equation for X(s). The new DE is a first
order problem. Maybe it is easier than the original second order problem. Rewrite



MATH 242, SPRING 2025 89

the new problem as

(−s2 +4s−4)X ′+(−2s+4− s+2)X = 0

(−s2 +4s−4)X ′+(−3s+6)X = 0

−(s−2)2X ′−3(s−2)X = 0

Divide both sides of the equation by −(s−2).

(s−2)X ′+3X = 0

We can separate the variables.

(s−2)
dX
ds

=−3X∫ dX
X

=
∫ −3

s−2
ds

ln |X |=−3ln |s−2|+C

Exponentiate to obtain
|X |= eC|s−2|−3

X =±eC(s−2)−3

Let K =±eC. Recall that

L (t2) =
2!
s3 and L (eat f (t)) = [L ( f (t))]|s−a.

It follows that L (e2tt2) = 2
(s−2)3 and

x = L −1(X) = L −1(K(s−2)−3) = K
2 e2tt2 = Be2tt2,

where B is the constant K
2 . We conclude that x = Be2tt2 is a solution for any

constant B.

Check. It is clear that if x = e2tt2 is a solution of the Differential Equation, then
x = Be2tt2 is a solution for any constant B. So, it is good enough to check that
x = e2tt2 is a solution of the Differential Equation. We calculate

x′ = 2e2tt +2e2tt2

x′′ =
(

2e2t +4e2tt
)
+
(

4e2tt +4e2tt2
)

= 2e2t +8e2tt +4e2tt2

Plug x into the left side of the DE to obtain

tx′′− (4t +1)x′+4tx+2x =


2e2tt +8e2tt2 +4e2tt3

−8e2tt −8e2tt2

−2e2tt −2e2tt2

+2e2tt2 +4e2tt3

= 0.
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The reason for Fact 16.2. We show that

L ( f ) ·L (g) = L ( f ∗g).

The first thing I will do is a little technical, but it isn’t hard. Indeed, I don’t really
have to do it, but if I didn’t do it, I would have to work a little harder at a later point.

Notice that

L ( f ) =
∫

∞

0
e−st f (t)dt, L (g) =

∫
∞

0
e−stg(t)dt, and

( f ∗g)(t) =
∫ t

0
f (τ)g(t − τ)dτ

all are about evaluating f and g at non-negative numbers only. In particular, if we
change the value of f or g at some negative number, then we will not have changed
L ( f ), L (g), f ∗g, or L ( f ∗g). So let

f+(t) =

{
f (t) for 0 ≤ t
0 for t < 0

and g+(t) =

{
g(t) for 0 ≤ t
0 for t < 0.

The point is that

L ( f+) = L ( f ), L (g+) = L (g), and L ( f ∗g) = L ( f+ ∗g+).

We compute

L ( f ∗g) = L ( f+ ∗g+)

=
∫

∞

0
e−st( f+ ∗g+)(t)dt

=
∫

∞

0
e−st

(∫ t

0
( f+(τ)g+(t − τ)dτ

)
dt

The basic trick is to let u = t − τ. When we do this e−st becomes
e−s(u+τ) = e−sue−sτ. We then “pull the integrals apart” using techniques from Math
241.

If t < τ < ∞, then t − τ < 0, g+(t − τ) = 0, and
∫

∞

t f+(τ)g+(t − τ)dτ = 0.

=
∫

∞

0
e−st

(∫
∞

0
f+(τ)g+(t − τ)dτ

)
dt

As far as the inner integral is concerned e−st is a constant; so we can move e−st

inside the inner integral. The parentheses no longer have any significance.

=
∫

∞

0

(∫
∞

0
e−st f+(τ)g+(t − τ)dτ

)
dt

=
∫

∞

0

∫
∞

0
e−st f+(τ)g+(t − τ)dτdt
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This object is called a double integral. One computes a double integral be using
iterated integrals. The given iterated integral is taken over the whole first quadrant
in the (τ, t)-plane. One visualizes this iterated integral as saying for each fixed t
(with 0 ≤ t < ∞), τ goes from 0 to ∞. (See the picture on the left on the next page.)
One can also fill this region using “vertical lines”. In this second approach, one
says, “For each fixed τ (with 0 ≤ τ < ∞), t goes from 0 to ∞.” This is the picture on
the right on the next page.

=
∫

∞

0

∫
∞

0
e−st f+(τ)g+(t − τ)dt dτ

Now we make the promised substitution. We let u = t − τ in the inner integral.
Remember τ is constant in the inner integral! Observe that du = dt. When t = 0,
u =−τ. As t goes to ∞, then u also goes to ∞.

=
∫

∞

0

∫
∞

−τ

e−s(u+τ) f+(τ)g+(u)dudτ

Of course, g+(u) = 0 for −τ ≤ u < 0; so
∫ 0
−τ

e−s(u+τ) f+(τ)g+(u)du = 0 and∫
∞

−τ
e−s(u+τ) f+(τ)g+(u)du =

∫
∞

0 e−s(u+τ) f+(τ)g+(u)du.

=
∫

∞

0

∫
∞

0
e−s(u+τ) f+(τ)g+(u)dudτ

We can separate the exponential e−s(u+τ) = e−sue−sτ

=
∫

∞

0

∫
∞

0
e−sue−sτ f+(τ)g+(u)dudτ

As far as the inner integral is concerned, e−sτ f+(τ) is a constant, because it does
not involve u.

=
∫

∞

0
e−sτ f+(τ)

∫
∞

0
e−sug+(u)dudτ

The expression
∫

∞

0 e−sug+(u)du does not involve the variable τ of the outer integral.
We may pull it out!

=
∫

∞

0
e−sτ f+(τ)dτ

∫
∞

0
e−sug+(u)du

= L ( f+) ·L (g+) = L ( f ) ·L (g). □
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Reason for Fact 16.3. We show what

L (t f ) =− d
ds

L ( f )

is all about.
Observe that

d
ds

L ( f ) =
d
ds

∫
∞

0
e−st f (t)dt

=
∫

∞

0

∂

∂s
(e−st f (t))dt

This is the only interesting step. It is called the Leibniz integral. One learns it in a
graduate course in Mathematics, Math 703.

=
∫

∞

0
−t(e−st f (t))dt

= −
∫

∞

0
e−stt f (t)dt

= −L (t f (t)). □
Reason for Fact 16.4. We show that L ( f

t ) =
∫

∞

s [L ( f )]
∣∣∣
σ

dσ, provided lim
t→0+

f
t

exists and is finite.
Observe that∫

∞

s
[L ( f )]

∣∣∣
σ

dσ

=
∫

∞

s

∫
∞

0
e−σt f (t)dt dσ

=
∫

∞

0

∫
∞

s
e−σt f (t)dσdt See the picture on the next page.

=
∫

∞

0
lim

w→∞

−1
t e−σt f (t)

∣∣∣w
s

dt

=
∫

∞

0

(
lim

w→∞

−1
t e−wt f (t)− −1

t e−st f (t)
)

dt The limit is obviously zero.

=
∫

∞

0
e−st f (t)

t dt

= L ( f (t)
t ), provided lim

t→0+
f (t)

t exists and is finite.
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Fact 16.5. f ∗g = g∗ f

Reason

(g∗ f )(t) =
∫ t

0
g(τ) f (t − τ)dτ

Let u = t−τ. Compute du =−dτ. When τ = 0, then u = t. When τ = t, then u = 0.

= −
∫ 0

t
g(t −u) f (u)du

=
∫ t

0
g(t −u) f (u)du

= ( f ∗g)(t). □


