Problem 9 in Section 7.3. Find the inverse Laplace transform of $F(s)=$ $\frac{3 s+5}{s^{2}-6 s+25}$.

Solution. The denominator $s^{2}-6 s+25$ does not have real roots (because $b^{2}-4 a c=36-100$ is negative); so we will complete the square, rather than factor:

$$
s^{2}-6 s+25=\left(s^{2}-6 s+9\right)+16=(s-3)^{2}+16
$$

We see that

$$
\begin{aligned}
\mathcal{L}^{-1}\left(\frac{3 s+5}{s^{2}-6 s+25}\right) & =\mathcal{L}^{-1}\left(\frac{3 s+5}{(s-3)^{2}+16}\right) \\
& =\mathcal{L}^{-1}\left(\frac{3(s-3)+5+9}{(s-3)^{2}+16}\right) \\
& =3 \mathcal{L}^{-1}\left(\frac{(s-3)}{(s-3)^{2}+16}\right)+\frac{14}{4} \mathcal{L}^{-1}\left(\frac{4}{(s-3)^{2}+16}\right)
\end{aligned}
$$

We use $\mathcal{L}^{-1} F(s)=f(t) \Longrightarrow \mathcal{L}^{-1}(F(s-a))=e^{a t} f(t)$.

$$
=3 e^{3 t} \cos 4 t+\frac{7}{2} e^{3 t} \sin 4 t
$$

