Problem 27 in Section 7.3. Use Laplace transforms to solve the Initial Value Problem:

$$
x^{\prime \prime}+6 x^{\prime}+25 x=0, \quad x(0)=2, \quad x^{\prime}(0)=3 .
$$

Solution. Let $X=\mathcal{L}(x)$ Use $\mathcal{L}\left(f^{\prime}\right)=s \mathcal{L}(f)-f(0)$ twice to compute

$$
\begin{gathered}
\mathcal{L}\left(x^{\prime}\right)=s \mathcal{L}(x)-x(0)=s X-2 \\
\mathcal{L}\left(x^{\prime \prime}\right)=s \mathcal{L}\left(x^{\prime}\right)-x^{\prime}(0)=s(s X-2)-3=s^{2} X-2 s-3
\end{gathered}
$$

Apply \mathcal{L} to the Differential Equation and obtain

$$
\begin{gathered}
s^{2} X-2 s-3+6(s X-2)+25 X=0 \\
X\left(s^{2}+6 s+25\right)=2 s+15 \\
X=\frac{2 s+15}{s^{2}+6 s+25} \\
x=\mathcal{L}^{-1}(X)=\mathcal{L}^{-1}\left(\frac{2 s+15}{s^{2}+6 s+25}\right)
\end{gathered}
$$

The denominator does not have real number roots; so we complete the square:

$$
s^{2}+6 s+25=\left(s^{2}+6 s+9\right)+16=(s+3)^{2}+16
$$

Thus

$$
\begin{aligned}
x & =\mathcal{L}^{-1}\left(\frac{2 s+15}{(s+3)^{2}+16}\right) \\
& =\mathcal{L}^{-1}\left(\frac{2(s+3)+15-6}{(s+3)^{2}+16}\right) \\
& =2 \mathcal{L}^{-1}\left(\frac{(s+3)}{(s+3)^{2}+16}\right)+\frac{9}{4} \mathcal{L}^{-1}\left(\frac{4}{(s+3)^{2}+16}\right)
\end{aligned}
$$

We know that $\mathcal{L}^{-1}\left(\frac{4}{s^{2}+16}\right)=\sin 4 t$; hence $\mathcal{L}^{-1}\left(\frac{4}{(s+3)^{2}+16}\right)=e^{-3 t} \sin 4 t$. In a similar manner, $\mathcal{L}^{-1}\left(\frac{s}{s^{2}+16}\right)=\cos 4 t$; hence $\mathcal{L}^{-1}\left(\frac{s+3}{(s+3)^{2}+16}\right)=e^{-3 t} \cos 4 t$.

$$
=2 e^{-3 t} \cos 4 t+\frac{9}{4} e^{-3 t} \sin 4 t
$$

The solution of the initial value problem is

$$
x=2 e^{-3 t} \cos 4 t+\frac{9}{4} e^{-3 t} \sin 4 t
$$

Check. Plug

$$
x=e^{-3 t}\left(2 \cos 4 t+\frac{9}{4} \sin 4 t\right)
$$

$$
\begin{aligned}
x^{\prime} & =e^{-3 t}(-8 \sin 4 t+9 \cos 4 t)-3 e^{-3 t}\left(2 \cos 4 t+\frac{9}{4} \sin 4 t\right) \\
& =e^{-3 t}\left(\frac{-59}{4} \sin 4 t+3 \cos 4 t\right) \\
x^{\prime \prime} & =e^{-3 t}(-59 \cos 4 t-12 \sin 4 t)-3 e^{-3 t}\left(\frac{-59}{4} \sin 4 t+3 \cos 4 t\right) \\
& =e^{-3 t}\left(-68 \cos 4 t+\frac{129}{4} \sin 4 t\right)
\end{aligned}
$$

into $x^{\prime \prime}+6 x^{\prime}+25 x$ and obtain

$$
\begin{gathered}
\left\{\begin{array}{l}
e^{-3 t}\left(-68 \cos 4 t+\frac{129}{4} \sin 4 t\right) \\
+6 e^{-3 t}\left(\frac{-59}{4} \sin 4 t+3 \cos 4 t\right) \\
+25 e^{-3 t}\left(2 \cos 4 t+\frac{9}{4} \sin 4 t\right)
\end{array}\right. \\
=(-68+18+50) \cos 4 t+\frac{1}{4}(129-6(59)+9(25)) \sin 4 t=0 ; \checkmark
\end{gathered}
$$

$x(0)=2 \checkmark ; x^{\prime}(0)=4 \checkmark$. Our proposed answer does everything it is supposed to do; it is correct.

