Problem 19 in Section 7.3. Find the inverse Laplace transform of $F(s)=\frac{s^{2}-2 s}{s^{4}+5 s^{2}+4}$.

Solution. The denominator factors as

$$
\left(s^{2}+4\right)\left(s^{2}+1\right) .
$$

We apply the technique of partial fractions to write

$$
\frac{s^{2}-2 s}{s^{4}+5 s^{2}+4}=\frac{A s+B}{s^{2}+4}+\frac{C s+D}{s^{2}+1} .
$$

Multiply both sides by $\left(s^{2}+4\right)\left(s^{2}+1\right)$:

$$
\begin{gathered}
s^{2}-2 s=(A s+B)\left(s^{2}+1\right)+(C s+D)\left(s^{2}+4\right) \\
s^{2}-2 s=(A+C) s^{3}+(B+D) s^{2}+(A+4 C) s+B+4 D
\end{gathered}
$$

We want

$$
\begin{cases}0= & A+C \\ 1= & B+D \\ -2= & A+4 C \\ 0= & B+4 D\end{cases}
$$

Equation 1 gives $A=-C$; Equation 3 gives $-2=-C+4 C$; so $C=-\frac{2}{3}$ and $A=\frac{2}{3}$. Equation 4 gives $B=-4 D$. Equation 2 gives $1=-4 D+D$. It follows that $D=-\frac{1}{3}$ and $B=\frac{4}{3}$. We compute

$$
\begin{gathered}
\mathcal{L}^{-1}\left(\frac{s^{2}-2 s}{s^{4}+5 s^{2}+4}\right)=\frac{1}{3} \mathcal{L}^{-1}\left(\frac{2 s+4}{s^{2}+4}+\frac{-2 s-1}{s^{2}+1}\right) \\
\quad=\frac{1}{3}(2 \cos 2 t+2 \sin 2 t-2 \cos t-\sin t)
\end{gathered}
$$

