Problem 7 in Section 7.2. Use Laplace transforms to solve the Initial Value Problem

$$
x^{\prime \prime}+x=\cos 3 t, \quad x(0)=1, \quad x^{\prime}(0)=0 .
$$

Solution. Let $X=\mathcal{L}(x)$. It follows that

$$
\begin{aligned}
\mathcal{L}\left(x^{\prime}\right) & =s \mathcal{L}(x)-x(0)=s X-1 \\
\mathcal{L}\left(x^{\prime \prime}\right) & =s \mathcal{L}\left(x^{\prime}\right)-x^{\prime}(0)=s(s X-1)-0=s^{2} X-s
\end{aligned}
$$

Apply \mathcal{L} to $x^{\prime \prime}+x=\cos 3 t$ and obtain

$$
\begin{gather*}
\mathcal{L}\left(x^{\prime \prime}\right)+\mathcal{L}(x)=\mathcal{L}(\cos 3 t) \\
s^{2} X-s+X=\frac{s}{s^{2}+9} \\
\left(s^{2}+1\right) X=s+\frac{s}{s^{2}+9} \\
X=\frac{s}{s^{2}+1}+\frac{s}{\left(s^{2}+9\right)\left(s^{2}+1\right)} \tag{22}
\end{gather*}
$$

We apply the technique of partial fractions to write $\frac{s}{\left(s^{2}+9\right)\left(s^{2}+1\right)}$ in the form

$$
\frac{A s+B}{s^{2}+1}+\frac{C s+D}{s^{2}+9} .
$$

(Keep in mind that we know how to find the inverse Laplace transform of the most recent expression.) We look for constants A, B, C, and D so that

$$
\frac{s}{\left(s^{2}+9\right)\left(s^{2}+1\right)}=\frac{A s+B}{s^{2}+1}+\frac{C s+D}{s^{2}+9} .
$$

m Multiply both sides by $\left(s^{2}+9\right)\left(s^{2}+1\right)$.

$$
\begin{gathered}
s=(A s+B)\left(s^{2}+9\right)+(C s+D)\left(s^{2}+1\right) \\
s=(A+C) s^{3}+(B+D) s^{2}+(9 A+C) s+(9 B+D)
\end{gathered}
$$

We want

$$
\left\{\begin{array}{l}
0=A+C \\
0=B+D \\
1=9 A+C \\
0=9 B+D
\end{array}\right.
$$

Equation two tells us that $B=-D$ and equation 4 tells us that $0=-9 D+D$; hence, $D=B=0$. Equation 1 tells us that $C=-A$ and equation 3 tells us that $1=8 A$. Thus $A=\frac{1}{8}$ and $C=-\frac{1}{8}$. Equation (22) now is

$$
X=\frac{s}{s^{2}+1}+\frac{1}{8}\left[\frac{s}{s^{2}+1}-\frac{s}{s^{2}+9}\right]
$$

$$
\begin{gathered}
X=\frac{1}{8}\left[9 \frac{s}{s^{2}+1}-\frac{s}{s^{2}+9}\right] \\
x=\mathcal{L}^{-1}(X)=\frac{9}{8} \mathcal{L}^{-1}\left(\frac{s}{s^{2}+1}\right)-\frac{1}{8} \mathcal{L}^{-1}\left(\frac{s}{s^{2}+9}\right) \\
x=\frac{9}{8} \cos t-\frac{1}{8} \cos 3 t .
\end{gathered}
$$

Check. Plug

$$
\begin{aligned}
x & =\frac{9}{8} \cos t-\frac{1}{8} \cos 3 t \\
x^{\prime} & =-\frac{9}{8} \sin t+\frac{3}{8} \sin 3 t \\
x^{\prime \prime} & =-\frac{9}{8} \cos t+\frac{9}{8} \cos 3 t
\end{aligned}
$$

into $x^{\prime \prime}+x$ and obtain

$$
\left\{\begin{array}{l}
-\frac{9}{8} \cos t+\frac{9}{8} \cos 3 t \\
+\frac{9}{8} \cos t-\frac{1}{8} \cos 3 t
\end{array}\right.
$$

$=\cos 3 t \checkmark ; x(0)=\frac{9}{8}-\frac{1}{8}=1 \checkmark$; and $x^{\prime}(0)=0+0=0 \checkmark$. Our proposed answer does everything it is supposed to do. It is correct.

