Problem 31 in Section 7.2. In class we calculated

$$
\mathcal{L}(t \cos k t)=\frac{s^{2}-k^{2}}{\left(s^{2}+k^{2}\right)^{2}} \quad \text { and } \quad \mathcal{L}(\sin k t)=\frac{k}{\left(s^{2}+k^{2}\right)} .
$$

Use these facts to calculate

$$
\mathcal{L}^{-1}\left(\frac{1}{\left(s^{2}+k^{2}\right)^{2}}\right)
$$

Solution. We get a common denominator:

$$
\mathcal{L}(\sin k t)=\frac{k\left(s^{2}+k^{2}\right)}{\left(s^{2}+k^{2}\right)^{2}} \quad \text { and } \quad \mathcal{L}(k t \cos k t)=\frac{k\left(s^{2}-k^{2}\right)}{\left(s^{2}+k^{2}\right)^{2}} .
$$

If we calculate the first one minus the second one we get

$$
\mathcal{L}(\sin k t-k t \cos k t)=\frac{k\left(s^{2}+k^{2}\right)}{\left(s^{2}+k^{2}\right)^{2}}-\frac{k\left(s^{2}-k^{2}\right)}{\left(s^{2}+k^{2}\right)^{2}}=\frac{2 k^{3}}{\left(s^{2}+k^{2}\right)^{2}} .
$$

Divide both sides by the constant $2 k^{3}$ to obtain

$$
\frac{1}{2 k^{3}} \mathcal{L}(\sin k t-k t \cos k t)=\frac{1}{\left(s^{2}+k^{2}\right)^{2}}
$$

Of course $k \mathcal{L}(f)=\mathcal{L}(k f)$ whenever k is a constant and f is a function; so

$$
\mathcal{L}\left(\frac{1}{2 k^{3}}(\sin k t-k t \cos k t)\right)=\frac{1}{\left(s^{2}+k^{2}\right)^{2}}
$$

and

$$
\frac{1}{2 k^{3}}(\sin k t-k t \cos k t)=\mathcal{L}^{-1}\left(\frac{1}{\left(s^{2}+k^{2}\right)^{2}}\right)
$$

