Problem 1 in Section 7.2. Use Laplace transforms to solve the Initial Value Problem

$$
x^{\prime \prime}+4 x=0, \quad x(0)=5, \quad x^{\prime}(0)=0 .
$$

Solution. Let $X=\mathcal{L}(x)$. It follows that

$$
\begin{aligned}
\mathcal{L}\left(x^{\prime}\right) & =s \mathcal{L}(x)-x(0)=s X-5 \\
\mathcal{L}\left(x^{\prime \prime}\right) & =s \mathcal{L}\left(x^{\prime}\right)-x^{\prime}(0)=s(s X-5)-0=s^{2} X-5 s
\end{aligned}
$$

Apply \mathcal{L} to $x^{\prime \prime}+4 x=0$ to obtain

$$
\begin{gathered}
s^{2} X-5 s+4 X=0 \\
X\left(s^{2}+4\right)=5 s \\
X=\frac{5 s}{s^{2}+4} \\
x=\mathcal{L}^{-1}(X)=\mathcal{L}^{-1}\left(\frac{5 s}{s^{2}+4}\right)=5 \mathcal{L}^{-1}\left(\frac{s}{s^{2}+4}\right)=5 \cos (2 t) . \\
x=5 \cos 2 t .
\end{gathered}
$$

Check. Plug

$$
\begin{aligned}
x & =\cos 2 t \\
x^{\prime} & =-2 \sin 2 t \\
x^{\prime \prime} & =-4 \cos 2 t
\end{aligned}
$$

into $x^{\prime \prime}+4 x$ and obtain $-4 \cos 2 t+4 \cos 2 t=0 \checkmark ; x(0)=1 \checkmark$; and $x^{\prime}(0)=$ $0 . \checkmark$ Our proposed answer does everything it is supposed to do. It is correct.

