Problem 25 in Section 7.1. Find the inverse Laplace transform of $F(s)=\frac{1}{s}-\frac{2}{s^{5 / 2}}$.

Solution. The fact sheet tells us that $\mathcal{L}(1)=\frac{1}{s}$ and $\mathcal{L}\left(t^{a}\right)=\frac{\Gamma(a+1)}{s^{a+1}}$. The fact sheet also tells us that $\Gamma(x+1)=x \Gamma(x)$ and $\Gamma\left(\frac{1}{2}\right)=\sqrt{\pi}$. Thus, when $a=\frac{3}{2}$,

$$
\mathcal{L}\left(t^{\frac{3}{2}}\right)=\frac{\Gamma\left(\frac{3}{2}+1\right)}{s^{\frac{3}{2}+1}}=\frac{\frac{3}{2} \Gamma\left(\frac{3}{2}\right)}{s^{\frac{5}{2}}}=\frac{\frac{3}{2} \Gamma\left(1+\frac{1}{2}\right)}{s^{\frac{5}{2}}}=\frac{\frac{3}{2}\left(\frac{1}{2}\right) \Gamma\left(\frac{1}{2}\right)}{s^{\frac{5}{2}}}=\frac{3 \sqrt{\pi}}{4 s^{\frac{5}{2}}} .
$$

We conclude that

$$
\begin{aligned}
\mathcal{L}^{-1}\left(\frac{1}{s}-\frac{2}{s^{5 / 2}}\right) & =\mathcal{L}^{-1}\left(\frac{1}{s}\right)-2 \mathcal{L}^{-1}\left(\frac{1}{s^{\frac{5}{2}}}\right) \\
& =1-2\left(\frac{4}{3 \sqrt{\pi}} t^{\frac{3}{2}}\right)
\end{aligned}
$$

