Problem 2 in Section 7.1. Use the definition of \mathcal{L} to compute $\mathcal{L}(f(t))$ for $f(t)=t^{2}$.

Solution. Recall that $\mathcal{L}(f(t))=\int_{0}^{\infty} e^{-s t} f(t) d t$. We must compute

$$
\mathcal{L}(t)=\int_{0}^{\infty} e^{-s t} t^{2} d t
$$

We use integration by parts:

$$
\int u d v=u v-\int v d u
$$

Take $u=t^{2}$ and $d v=e^{-s t} d t$. Compute $d u=2 t d t$ and $v=\frac{1}{-s} e^{-s t}$. It follows that

$$
\begin{aligned}
\mathcal{L}(f(t)) & =\int_{0}^{\infty} e^{-s t} f(t) d t \\
& =\int_{0}^{\infty} e^{-s t} t^{2} d t \\
& =\left[u v-\int v d u\right]_{0}^{\infty} \\
& =\left[t^{2} \frac{1}{-s} e^{-s t}-\int\left(\frac{1}{-s} e^{-s t}\right) 2 t d t\right]_{0}^{\infty} \\
& =\left[t^{2} \frac{1}{-s} e^{-s t}\right]_{0}^{\infty}-\frac{2}{-s} \int_{0}^{\infty} e^{-s t} t d t
\end{aligned}
$$

Obviously, we can compute $\int_{0}^{\infty} e^{-s t} t d t$ because we just did it in problem one. But, it would be more clever to observe that this integral is exactly equal to $\mathcal{L}(t)$ and we know from number one (or any list of Laplace transform formulas) that $\mathcal{L}(t)=\frac{1}{s^{2}}$, provided $0<s$.

Also, \int^{∞} always means plug a number b in for the variable and take the limit as b goes to infinity.

$$
=\lim _{b \rightarrow \infty} b^{2} \frac{1}{-s} e^{-s b}-0^{2} \frac{1}{-s} e^{-s(0)}+\frac{2}{s}\left(\frac{1}{s^{2}}\right)
$$

When one evaluates $\lim _{b \rightarrow \infty} \frac{b^{2}}{e^{s b}}$, where b is a positive constant, one uses the fact that the exponential function overwhelms all polynomial functions; or more precisely, one uses L'Hopital's rule twice, to see that $\lim _{b \rightarrow \infty} \frac{b^{2}}{e^{s b}}=0$.

$$
=\frac{2}{s^{3}}
$$

