Problem 17 in Section 7.1. Compute $\mathcal{L}(f(t))$ for $f(t)=\cos ^{2} 2 t$.
Solution. The Laplace transform fact sheet does not directly show how to do this problem. Maybe we can rewrite the problem in a different form and use the fact sheet on the new form. In calculus if you had to integrate $\cos ^{2} x$, you used the identity that

$$
\begin{equation*}
\cos ^{2} x=\frac{1}{2}(1+\cos 2 x) \tag{20}
\end{equation*}
$$

Of course, that identity will help us here. If you don't immediately know (20), maybe you remember

$$
\begin{equation*}
\cos (\theta+\phi)=\cos \theta \cos \phi-\sin \theta \sin \phi \tag{21}
\end{equation*}
$$

(Of course (21) is an immdeiate consequence of Euler's identity

$$
e^{i \theta}=\cos (\theta)+i \sin (\theta) .
$$

Just expand both sides of

$$
e^{i \theta} e^{i \phi}=e^{i(\theta+\phi)}
$$

and equate the real part of each side.) At any rate, if you know (21), then

$$
\cos 2 x=\cos ^{2} x-\sin ^{2} x=\cos ^{2} x-\left(1-\cos ^{2} x\right)
$$

hence

$$
\cos 2 x=2 \cos ^{2} x-1
$$

and therefore (20).
As soon as you know (20), then the problem is easy:

$$
\mathcal{L}\left(\cos ^{2} 2 t\right)=\frac{1}{2} \mathcal{L}(1+\cos 4 t)=\frac{1}{2}\left(\frac{1}{s}+\frac{s}{s^{2}+16}\right) .
$$

Of course, the fact sheet tells us that $\mathcal{L}(1)=\frac{1}{s}$ and $\mathcal{L}(\cos k t)=\frac{s}{s^{2}+k^{2}}$.

