Problem 13 in Section 7.1. Compute $\mathcal{L}(f(t))$ for $f(t) = t - 2e^{3t}$.

Solution. We compute

$$\mathcal{L}(f(t)) = \mathcal{L}(t - 2e^{3t})$$
$$= \mathcal{L}(t) - 2\mathcal{L}(e^{3t})$$

Use the fact sheet about Laplace transforms to see that $\mathcal{L}(t)=rac{1}{s^2}$ and $\mathcal{L}(e^{at})=rac{1}{s-a}$.

$$= \frac{1}{s^2} - \frac{2}{s-3}$$