Problem 11 in Section 7.1. Compute $\mathcal{L}(f(t))$ for $f(t)=\sqrt{t}+3 t$.
Solution. Use the second page of the fact sheet about Laplace Transforms.

$$
\begin{aligned}
\mathcal{L}(f(t)) & =\mathcal{L}(\sqrt{t}+3 t) \\
& =\mathcal{L}(\sqrt{t})+3 \mathcal{L}(t)
\end{aligned}
$$

The fact sheet says that $\mathcal{L}\left(t^{a}\right)=\frac{\Gamma(a+1)}{s^{a+1}}$. It follows that

$$
\Gamma\left(t^{1 / 2}\right) \frac{\Gamma\left(\frac{1}{2}+1\right)}{s^{\frac{1}{2}+1}}=\frac{\frac{1}{2} \Gamma\left(\frac{1}{2}\right)}{s^{3 / 2}}=\frac{\sqrt{\pi}}{2 s^{3 / 2}}
$$

The fact sheet also says that $\Gamma(t)=\frac{1}{s^{2}}$. We conclude that

$$
\mathcal{L}(f(t))=\frac{\sqrt{\pi}}{2 s^{3 / 2}}+\frac{3}{s^{2}} .
$$

