Problem 39 in Section 3.5. Solve the Initial Value Problem

$$
y^{\prime \prime \prime}+y^{\prime \prime}=x+e^{-x}, \quad y(0)=1, \quad y^{\prime}(0)=0, \quad y^{\prime \prime}(0)=1 .
$$

Solution.

There are three steps.
First we solve the homogeneous problem. That is, we find the general solution of $y^{\prime \prime \prime}+y^{\prime \prime}=0$. We try $y=e^{r x}$ and we consider the characteristic equation

$$
\begin{gathered}
r^{3}+r^{2}=0 \\
r^{2}(r+1)=0
\end{gathered}
$$

The general solution of the homogeneous problem is

$$
\begin{equation*}
y=c_{1}+c_{2} x+c_{3} e^{-x} \tag{17}
\end{equation*}
$$

Then we find a particular solution of the given Differential Equation.
Actually we will do this steps in two pieces. First we will find a particular solution for

$$
y^{\prime \prime \prime}+y^{\prime \prime}=x
$$

then we will find a particular solution for $y^{\prime \prime \prime}+y^{\prime \prime}=e^{-x}$, then we will add these two particular solutions to get a particular solution for $y^{\prime \prime \prime}+y^{\prime \prime}=x+e^{-x}$.

We find a particular solution for $y^{\prime \prime \prime}+y^{\prime \prime}=x$. Normally, if we want to get a linear expression out of a linear differential operator with constant coefficients, we would input a linear expression like $A x+B$. But the linear operator

$$
\frac{d^{3}}{d x^{3}}+\frac{d^{2}}{d x^{2}}
$$

sends all linear expressions $A x+B$; so we better raise the powers on x. Let us try for a particular solution of $y^{\prime \prime \prime}+y^{\prime \prime}=x$ of the form $y=A x^{3}+B x^{2}$. (I think we need to play with two consecutive powers of x. It is clear that $A x+B$ won't work. It is very unlikely that $A x^{2}+B x$ will work; because $y^{\prime \prime \prime}+y^{\prime \prime}$ sends $B x$ to zero automatically. So $A x^{2}+B x$ really isn't two consecutive interesting powers of x. At any rate, if you try the wrong candidate, there won't be any solution, then you merely try a better candidate.)

Plug

$$
\begin{aligned}
y & =A x^{3}+B x^{2} \\
y^{\prime} & =3 A x^{2}+2 B x \\
y^{\prime \prime} & =6 A x+2 B \\
y^{\prime \prime \prime} & =6 A
\end{aligned}
$$

into

$$
y^{\prime \prime \prime}+y^{\prime \prime}=x
$$

and obtain

$$
6 A+(6 A x+2 B)=x
$$

We want to choose A and B so that

$$
(6 A+2 B)+6 A x=x
$$

We want $0=6 A+2 B$ and $6 A=1$. We take $A=\frac{1}{6}$ and $B=-\frac{1}{2}$. That is,

$$
\begin{equation*}
y=\frac{1}{6} x^{3}-\frac{1}{2} x^{2} \text { is a particular solution of } y^{\prime \prime \prime}+y^{\prime \prime}=x \tag{18}
\end{equation*}
$$

We find a particular solution for $y^{\prime \prime \prime}+y^{\prime \prime}=e^{-x}$. Normally, we would look for a solution of the form $y=A e^{-x}$; but we know that all functions of the form $y=A e^{-x}$ are solutions of the form $y^{\prime \prime \prime}+y^{\prime \prime}=0$; so we won't any functions of the form $y=A e^{-x}$ which are solutions of $y^{\prime \prime \prime}+y^{\prime \prime}=e^{-x}$. So, instead we look for a solution of $y^{\prime \prime \prime}+y^{\prime \prime}=e^{-x}$ of the form $y=A x e^{-x}$. Plug

$$
\begin{aligned}
y & =A x e^{-x} \\
y^{\prime} & =-A x e^{-x}+A e^{-x}=A(1-x) e^{-x} \\
y^{\prime \prime} & =-A(1-x) e^{-x}-A e^{-x}=A(-2+x) e^{-x} \\
y^{\prime \prime \prime} & =-A(-2+x) e^{-x}+A e^{-x}=A(3-x) e^{-x}
\end{aligned}
$$

into $y^{\prime \prime \prime}+y^{\prime \prime}=e^{-x}$ and obtain

$$
\begin{gathered}
A(3-x) e^{-x}+A(-2+x) e^{-x}=e^{-x} \\
A e^{-x}=e^{-x}
\end{gathered}
$$

We take $A=1$. Thus,

$$
\begin{equation*}
y=x e^{-x} \text { is a solution of } y^{\prime \prime \prime}+y^{\prime \prime}=e^{-x} . \tag{19}
\end{equation*}
$$

Combine (17), (18), and (19) to see that

$$
y=c_{1}+c_{2} x-\frac{1}{2} x^{2}+\frac{1}{6} x^{3}+c_{3} e^{-x}+x e^{-x}
$$

is the general solution of $y^{\prime \prime \prime}+y^{\prime \prime}=x+e^{-x}$.
Step 3. We use the initial condition to evaluate the constants. Plug $y(0)=1, y^{\prime}(0)=0$, and $y^{\prime \prime}(0)=1$ into

$$
\begin{aligned}
y & =c_{1}+c_{2} x-\frac{1}{2} x^{2}+\frac{1}{6} x^{3}+c_{3} e^{-x}+x e^{-x} \\
y^{\prime} & =c_{2}-x+\frac{1}{2} x^{2}-c_{3} e^{-x}-x e^{-x}+e^{-x} \\
& =c_{2}-x+\frac{1}{2} x^{2}+\left(1-c_{3}\right) e^{-x}-x e^{-x} \\
y^{\prime \prime} & =-1+x-\left(1-c_{3}\right) e^{-x}+x e^{-x}-e^{-x}
\end{aligned}
$$

and obtain

$$
\left\{\begin{array}{l}
1=c_{1}+c_{3} \\
0=c_{2}-c_{3}+1 \\
1=-1-\left(1-c_{3}\right)-1
\end{array}\right.
$$

The bottom equation gives $c_{3}=4$. The middle equation gives $c_{2}=3$. The top equation gives that $c_{1}=-3$. We conclude that

$$
y=-3+3 x-\frac{1}{2} x^{2}+\frac{1}{6} x^{3}+4 e^{-x}+x e^{-x}
$$

is the solution of the Initial Value Problem

$$
y^{\prime \prime \prime}+y^{\prime \prime}=x+e^{-x}, \quad y(0)=1, \quad y^{\prime}(0)=0, \quad y^{\prime \prime}(0)=1 .
$$

Check. Plug

$$
\begin{aligned}
y & =-3+3 x-\frac{1}{2} x^{2}+\frac{1}{6} x^{3}+4 e^{-x}+x e^{-x} \\
y^{\prime} & =3-x+\frac{1}{2} x^{2}-4 e^{-x}-x e^{-x}+e^{-x} \\
& =3-x+\frac{1}{2} x^{2}-3 e^{-x}-x e^{-x} \\
y^{\prime \prime} & =-1+x+3 e^{-x}+x e^{-x}-e^{-x} \\
& =-1+x+2 e^{-x}+x e^{-x} \\
y^{\prime \prime \prime} & =1-2 e^{-x}-x e^{-x}+e^{-x} \\
& =1-e^{-x}-x e^{-x}
\end{aligned}
$$

into $y^{\prime \prime \prime}+y^{\prime \prime}$ and obtain

$$
\left(1-e^{-x}-x e^{-x}\right)+\left(-1+x+2 e^{-x}+x e^{-x}\right)=x+e^{x} \checkmark
$$

$y(0)=-3+4=1 \checkmark ; y^{\prime}(0)=3-3=0 \checkmark$; and $y^{\prime \prime}(0)=-1+3-1=1 \checkmark$. Our proposed solution does everything it is supposed to do. It is correct.

