Problem 37 in Section 3.5. Solve the Initial Value Problem

$$
y^{\prime \prime \prime}-2 y^{\prime \prime}+y^{\prime}=1+x e^{x}, \quad y(0)=y^{\prime}(0)=0, \quad y^{\prime \prime}(0)=1 .
$$

Solution.

There are three steps.

First we solve the homogeneous problem.

That is, we find the general solution of $y^{\prime \prime \prime}-2 y^{\prime \prime}+y^{\prime}=0$. We try $y=e^{r x}$. We study the characteristic equation $r^{3}-2 r^{2}+r=0$. We study $r\left(r^{2}-2 r+1\right)=$ 0 . We study $r(r-1)^{2}=0$, Three linearly independent solutions of this third order linear homogeneous Differential Equation are $y=1, y=e^{x}$, and $y=x e^{x}$. The general solution of $y^{\prime \prime \prime}-2 y^{\prime \prime}+y^{\prime}=0$ is

$$
y=c_{1}+c_{2} e^{x}+c_{3} x e^{x} .
$$

Then we find a particular solution of the given Differential Equation.

We look for a particular solution of $y^{\prime \prime \prime}-2 y^{\prime \prime}+y^{\prime}=1+x e^{x}$. Clearly, it is good enough to add a particular solution of $y^{\prime \prime \prime}-2 y^{\prime \prime}+y^{\prime}=1$ to a particular solution of $y^{\prime \prime \prime}-2 y^{\prime \prime}+y^{\prime}=x e^{x}$.

If we are looking for a particular solution of $y^{\prime \prime \prime}-2 y^{\prime \prime}+y^{\prime}=1$, it is pretty clear that $y=x$ works. (If this isn't clear then try $y=A$, notice that it doesn't work, then try $y=A x+B$ and notice that this does work when $B=0$ and $A=1$.) At any rate

$$
\begin{equation*}
y=x \text { is a particular solution of } y^{\prime \prime \prime}-2 y^{\prime}+y^{\prime}=1 \tag{16}
\end{equation*}
$$

Now we need a particular solution of $y^{\prime \prime \prime}-2 y^{\prime \prime}+y^{\prime}=x e^{x}$. Normally, we would try $y=A x e^{x}+B e^{x}$. But we know that every function of the form $y=A x e^{x}+B e^{x}$ is a solution of the homogeneous problem $y^{\prime \prime \prime}-2 y^{\prime \prime}+y^{\prime}=0$; so there is no point trying this candidate. If we were supposed to find a particular solution of $y^{\prime \prime \prime}-2 y^{\prime \prime}+y^{\prime}=e^{x}$, we would try $y=A x^{2} e^{x}$ (because e^{x} and $x e^{x}$ both are solutions of $y^{\prime \prime \prime}-2 y^{\prime \prime}+y^{\prime}=0$; so once again, there is no point in trying $y=A x^{2} e^{x}$. So we try $y=A x^{3} e^{x}+B x^{2} e^{x}$. (By the way, if you try a candidate which does not work, you will get a system of equations that has no solution. If this happens to you, it is not a big deal, you just have to start again with a better candidate.)

We plug

$$
\begin{aligned}
y & =\left(A x^{3}+B x^{2}\right) e^{x} \\
y^{\prime} & =\left(A x^{3}+B x^{2}\right) e^{x}+\left(3 A x^{2}+2 B x\right) e^{x} \\
& =\left(A x^{3}+(3 A+B) x^{2}+2 B x\right) e^{x} \\
y^{\prime \prime} & =\left(A x^{3}+(3 A+B) x^{2}+2 B x\right) e^{x}+\left(3 A x^{2}+(6 A+2 B) x+2 B\right) e^{x} \\
& =\left(A x^{3}+(6 A+B) x^{2}+(6 A+4 B) x+2 B\right) e^{x} \\
y^{\prime \prime \prime} & =\left(A x^{3}+(6 A+B) x^{2}+(6 A+4 B) x+2 B\right) e^{x}+\left(3 A x^{2}+(12 A+2 B) x+(6 A+4 B)\right) e^{x} \\
& =\left(A x^{3}+(9 A+B) x^{2}+(18 A+6 B) x+6 A+6 B\right) e^{x}
\end{aligned}
$$

into $y^{\prime \prime \prime}-2 y^{\prime \prime}+y^{\prime}=x e^{x}$ and obtain

$$
\begin{gathered}
\left\{\begin{array}{l}
\left(A x^{3}+(9 A+B) x^{2}+(18 A+6 B) x+6 A+6 B\right) e^{x} \\
-2\left(\left(A x^{3}+(6 A+B) x^{2}+(6 A+4 B) x+2 B\right) e^{x}\right) \\
+\left(A x^{3}+(3 A+B) x^{2}+2 B x\right) e^{x}
\end{array}\right\}=x e^{x} . \\
\left\{\begin{array}{l}
(1-2+1) A x^{3} \\
+((9-12+3) A+(1-2+1) B) x^{2} \\
+((18-12) A+(6-8+2) B) x \\
+(6 A+(6-4) B) e^{x}
\end{array}\right\}=x e^{x}
\end{gathered}
$$

We want to find A and B with

$$
(6 A x+6 A+2 B) e^{x}=x e^{x}
$$

We want

$$
6 A=1 \quad \text { and } \quad 6 A+2 B=0
$$

We take $A=\frac{1}{6}$ and $B=-\frac{1}{2}$.
So

$$
y=x+\left(\frac{1}{6} x^{3}-\frac{1}{2} x^{2}\right) e^{x}
$$

is a particular solution of $y^{\prime \prime \prime}-2 y^{\prime \prime}+y^{\prime}=1+x e^{x}$. (The " x " comes from (16).) The general solution of $y^{\prime \prime \prime}-2 y^{\prime \prime}+y^{\prime}=1+x e^{x}$ is

$$
y=c_{1}+x+\left(c_{2}+c_{3} x+\frac{1}{6} x^{3}-\frac{1}{2} x^{2}\right) e^{x}
$$

Step 3. We use the initial condition to evaluate the constants.

We compute

$$
\begin{aligned}
y & =c_{1}+x+\left(c_{2}+c_{3} x+\frac{1}{6} x^{3}-\frac{1}{2} x^{2}\right) e^{x} \\
y^{\prime} & =1+\left(c_{2}+c_{3} x+\frac{1}{6} x^{3}-\frac{1}{2} x^{2}+c_{3}+\frac{1}{2} x^{2}-x\right) e^{x} \\
& =1+\left(c_{2}+c_{3} x+\frac{1}{6} x^{3}+c_{3}-x\right) e^{x} \\
y^{\prime \prime} & =\left(c_{2}+c_{3} x+\frac{1}{6} x^{3}+c_{3}-x+c_{3}+\frac{1}{2} x^{2}-1\right) e^{x}
\end{aligned}
$$

We use $y(0)=0, y^{\prime}(0)=0, y^{\prime \prime}(0)=1$. We must find c_{1}, c_{2}, and c_{3} so that

$$
\left\{\begin{array}{l}
0=c_{1}+c_{2} \\
0=1+c_{2}+c_{3} \\
1=c_{2}+2 c_{3}-1
\end{array}\right.
$$

We solve

$$
\begin{array}{rlrl}
0 & =c_{1}+c_{2} \\
-1 & = & c_{2}+c_{3} \\
2 & = & c_{2}+2 c_{3}
\end{array}
$$

Replace Equation 3 with Equation 3 minus Equation 2:

$$
\begin{array}{rlrl}
0 & =c_{1}+c_{2} \\
-1 & = & c_{2}+c_{3} \\
3 & = & c_{3}
\end{array}
$$

Therefore, $c_{3}=3, c_{2}=-4$, and $c_{1}=4$.
The solution of the initial value problem

$$
y^{\prime \prime \prime}-2 y^{\prime \prime}+y^{\prime}=1+x e^{x}, \quad y(0)=y^{\prime}(0)=0, \quad y^{\prime \prime}(0)=1
$$

is

$$
y=4+x+\left(-4+3 x+\frac{1}{6} x^{3}-\frac{1}{2} x^{2}\right) e^{x} .
$$

Check. We plug

$$
\begin{aligned}
y & =4+x+\left(-4+3 x+\frac{1}{6} x^{3}-\frac{1}{2} x^{2}\right) e^{x} \\
y^{\prime} & =1+\left(-4+3 x+\frac{1}{6} x^{3}-\frac{1}{2} x^{2}\right) e^{x}+\left(3+\frac{1}{2} x^{2}-x\right) e^{x} \\
& =1+\left(-1+2 x+\frac{1}{6} x^{3}\right) e^{x} \\
y^{\prime \prime} & =\left(-1+2 x+\frac{1}{6} x^{3}\right) e^{x}+\left(2+\frac{1}{2} x^{2}\right) e^{x} \\
& =\left(1+2 x+\frac{1}{2} x^{2}+\frac{1}{6} x^{3}\right) e^{x} \\
y^{\prime \prime \prime} & =\left(1+2 x+\frac{1}{2} x^{2}+\frac{1}{6} x^{3}\right) e^{x}+\left(2+x+\frac{1}{2} x^{2}\right) e^{x} \\
& =\left(3+3 x+x^{2}+\frac{1}{6} x^{3}\right) e^{x}
\end{aligned}
$$

into $y^{\prime \prime \prime}-2 y^{\prime \prime}+y^{\prime}$ and obtain

$$
\left\{\begin{array}{l}
\left(3+3 x+x^{2}+\frac{1}{6} x^{3}\right) e^{x} \\
-2\left(1+2 x+\frac{1}{2} x^{2}+\frac{1}{6} x^{3}\right) e^{x} \\
+1+\left(-1+2 x+\frac{1}{6} x^{3}\right) e^{x}
\end{array}\right\}=1+x e^{x} \checkmark
$$

$y(0)=4-4=0 \checkmark ; y^{\prime}(0)=1-1=0 \checkmark$; and $y^{\prime \prime}(0)=1 \checkmark$. Our solution does everything it is supposed to do. It is correct.

