Problem 2 in Section 3.5. Find a particular solution of

$$
y^{\prime \prime}-y^{\prime}-2 y=3 x+4
$$

Solution. We try $y=A x+B$. Plug

$$
\begin{aligned}
y & =A x+B \\
y^{\prime} & =A \\
y^{\prime \prime} & =0
\end{aligned}
$$

into $y^{\prime \prime}-y^{\prime}-2 y=3 x+4$ and obtain

$$
0-A-2(A x+B)=3 x+4
$$

In other words,

$$
-2 A x+(-2 B-A)=3 x+4
$$

Equate the corresponding coefficients. We solve

$$
\left\{\begin{array}{l}
-2 A=3 \\
(-2 B-A)=4
\end{array}\right.
$$

We see that $A=\frac{3}{-2}$ and $-2 B=4-\frac{3}{2}$, Thus, $B=\frac{-1}{2} \frac{5}{2}=-\frac{5}{4}$.
We conclude that $y=\frac{3}{-2} x-\frac{5}{4}$ is a particular solution of $y^{\prime \prime}-y^{\prime}-2 y=$ $3 x+4$.

Check. We plug

$$
\begin{aligned}
& \quad y=\frac{3}{-2} x-\frac{5}{4} \\
& y^{\prime}=\frac{3}{-2} \\
& y^{\prime \prime}=0
\end{aligned}
$$

into $y^{\prime \prime}-y^{\prime}-2 y$ and obtain

$$
0-\frac{3}{-2}-2\left(\frac{3}{-2} x-\frac{5}{4}\right)=3 x+\frac{3}{2}+\frac{5}{2}=3 x+4 . \checkmark
$$

