Problem 21 in Section 3.4. Solve the Initial Problem

$$
x^{\prime \prime}+10 x^{\prime}+125 x=0, \quad x(0)=6, \quad x^{\prime}(0)=50 .
$$

Put your answer in the form $x(t)=C e^{a t} \cos (b t-\alpha)$ if this makes sense. Sketch the graph of $x=x(t)$.

Solution. We try $x=e^{r t}$. We must study the characteristic equation

$$
r^{2}+10 r+125=0
$$

We use the quadratic formula: the roots of $a r^{2}+b r+c=0$ are

$$
r=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

In our problem,

$$
\begin{aligned}
r & =\frac{-10 \pm \sqrt{100-500}}{2} \\
& =\frac{-10 \pm 20 i}{2} \\
& =-5 \pm 10 i
\end{aligned}
$$

It follows that

$$
\begin{aligned}
x(t) & =e^{-5 t}\left(c_{1} \cos 10 t+c_{2} \sin 10 t\right) \\
x^{\prime}(t) & =e^{-5 t}\left(-10 c_{1} \sin 10 t+10 c_{2} \cos 10 t\right)-5 e^{-5 t}\left(c_{1} \cos 10 t+c_{2} \sin 10 t\right)
\end{aligned}
$$

Evaluate $x(t)$ and $x^{\prime}(t)$ at $t=0$ to learn that $6=c_{1}$ and $50=10 c_{2}-5 c_{1}$. We conclude that $c_{2}=8$. Thus the solution of the Initial Value Problem is

$$
x(t)=e^{-5 t}(6 \cos 10 t+8 \sin 10 t)
$$

We write our answer in the form $x(t)=C e^{a t} \cos (b t-\alpha)$. Of course,

$$
6^{2}+8^{2}=10^{2}
$$

Divide both sides by $\sqrt{6^{2}+8^{2}}=10$:

$$
x(t)=10 e^{-5 t}\left(\frac{3}{5} \cos 10 t+\frac{4}{5} \sin 10 t\right) .
$$

Consider a right triangle with

$$
\mathrm{ADJ}=3, \quad \mathrm{OP}=4, \quad \text { and } \quad \mathrm{HYP}=5 .
$$

Let ϕ be the angle from ADJ to HYP. Observe that $\cos \phi=\frac{3}{5}$ and $\sin \phi=\frac{4}{5}$. (There is a picture of ϕ on the next-to-last page of this solution.)

Use the identity

$$
\cos (\theta-\phi)=\cos \theta \cos \phi+\sin \theta \sin \phi
$$

with $\theta=10 t$ and $\phi=\arccos \frac{3}{5}$ to see that

$$
\cos (10 t-\phi)=\cos 10 t \cos \phi+\sin 10 t \sin \phi=\frac{3}{5} \cos 10 t+\frac{4}{5} \sin \phi ;
$$

hence

$$
x(t)=10 e^{-5 t} \cos (10 t-\phi), \quad \text { for } \phi=\arccos \frac{3}{5} .
$$

Check. Plug

$$
\begin{aligned}
x(t) & =10 e^{-5 t} \cos (10 t-\phi) \\
x^{\prime}(t) & =10 e^{-5 t}(-10) \sin (10 t-\phi)-50 e^{-5 t} \cos (10 t-\phi) \\
& =e^{-5 t}(-100 \sin (10 t-\phi)-50 \cos (10 t-\phi)) \\
x^{\prime \prime}(t) & =\left\{\begin{array}{l}
e^{-5 t}(-1000 \cos (10 t-\phi)+500 \sin (10 t-\phi)) \\
-5 e^{-5 t}(-100 \sin (10 t-\phi)-50 \cos (10 t-\phi))
\end{array}\right. \\
& =e^{-5 t}((-1000+250) \cos (10 t-\phi)+(500+500) \sin (10 t-\phi)) \\
& =e^{-5 t}((-750) \cos (10 t-\phi)+(1000) \sin (10 t-\phi))
\end{aligned}
$$

into $x^{\prime \prime}+10 x^{\prime}+125 x$ and obtain

$$
\begin{aligned}
& \left\{\begin{array}{l}
+e^{-5 t}((-750) \cos (10 t-\phi)+(1000) \sin (10 t-\phi)) \\
+10\left[e^{-5 t}(-100 \sin (10 t-\phi)-50 \cos (10 t-\phi))\right] \\
+125\left[10 e^{-5 t} \cos (10 t-\phi)\right]
\end{array}\right. \\
& =e^{-5 t}((-750-500+1250) \cos (10 t-\phi)(1000-1000) \sin (10 t-\phi)=0), \checkmark \\
& \begin{aligned}
x(0)=10 \cos \phi & =10\left(\frac{3}{5}\right)=6 \checkmark, \text { and } \\
x^{\prime}(0) & =-100 \sin (-\phi)-50 \cos (-\phi)=100 \sin \phi-50 \cos \phi \\
& =100\left(\frac{4}{5}\right)-50\left(\frac{3}{5}\right)=80-30=50 . \checkmark
\end{aligned}
\end{aligned}
$$

Our solution does everything it is supposed to do. It is correct.
There is a picture of a the angle $\arccos \frac{3}{5}$ on the next page.
There is a sketch of $x(t)=10 e^{-5 t} \cos (10 t-\phi)$, for $\phi=\arccos \frac{3}{5}$ on the last page of this solution.

The triangle from section 3.4 number 21

$$
\begin{aligned}
& \cos \varphi=\frac{3}{5} \\
& \sin \varphi=\frac{4}{5} \\
& \varphi=\arccos \left(\frac{3}{5}\right)
\end{aligned}
$$

Picture for 3.4 number 21
We are supposed to draw

$$
x=10 e^{-5 t} \cos (10 t-w)
$$

where $\omega=\arccos \left(\frac{3}{5}\right)$
The graph bournes between $x=10 e^{-5 t}$ and $x=-10 e^{-5 t}$

