Problem 17 in Section 3.4. Solve the Initial Problem

$$
x^{\prime \prime}+8 x^{\prime}+16 x=0, \quad x(0)=5, \quad x^{\prime}(0)=-10 .
$$

Put your answer in the form $x(t)=C e^{a t} \cos (b t-\alpha)$ if this makes sense. Sketch the graph of $x=x(t)$.

Solution. We try $x=e^{r t}$. We must study the characteristic equation

$$
\begin{gathered}
r^{2}+8 r+16=0 \\
(r+4)^{2}=0
\end{gathered}
$$

We have a repeated root of $r=-4$. The general solution of the Differential equation is

$$
x=c_{1} e^{-4 t}+c_{2} t e^{-4 t} .
$$

We re-write this solution as

$$
x=\left(c_{1}+c_{2} t\right) e^{-4 t}
$$

We take the derivative in order to evaluate the constants.

$$
\begin{gathered}
x^{\prime}=-4\left(c_{1}+c_{2} t\right) e^{-4 t}+c_{2} e^{-4 t} \\
x^{\prime}=\left(-4 c_{1}+c_{2}-4 c_{2} t\right) e_{-4 t}
\end{gathered}
$$

Plug $t=0$ into $x(t)$ and $x^{\prime}(t)$ to see that

$$
\begin{array}{rlc}
5 & = & c_{1} \\
-10 & = & -4 c_{1}+c_{2}
\end{array}
$$

Thus, $c_{1}=5$ and $c_{2}=10$. The solution is

$$
x=(5+10 t) e^{-4 t} .
$$

Check. Plug

$$
\begin{aligned}
x & =(5+10 t) e^{-4 t} \\
x^{\prime} & =-4(5+10 t) e^{-4 t}+10 e^{-4 t} \\
& =(-10-40 t) e^{-4 t} \\
x^{\prime \prime} & =-4(-10-40 t) e^{-4 t}-40 e^{-4 t} \\
& =160 t e^{-4 t}
\end{aligned}
$$

into $x^{\prime \prime}+8 x^{\prime}+16 x$ and obtain

$$
\begin{aligned}
& 160 t e^{-4 t}+8\left((-10-40 t) e^{-4 t}\right)+16\left((5+10 t) e^{-4 t}\right) \\
& =((-80+80)+(160-320+160) t) e^{-4 t}=0, \checkmark
\end{aligned}
$$

$$
x(0)=5 \checkmark, x^{\prime}(0)=-10 \checkmark
$$

Our solution does everything it is supposed to do. It is correct.

Picture for Section 3.4 Probken 17 .
We are supposed to graph $x=(5$ trot $) e^{-4 t}$. We know that $x^{\prime}=(-10-40 t) e^{-4 t}$ is negative bor $0<t$
We prows that $x^{\prime \prime}=160 t e^{-4 t}$ is positive for $D<t$
Wee fin ow $\lim _{t \rightarrow \infty} X=0$ (use L'hopital's rule if necessary)
So the graph is always deceasing, aluags concac up, the graph starts at $t=0 x=5$ and the graph approaches the t-axis as t goes to infinity.

