Problem 15 in Section 3.4. Solve the Initial Problem

$$\frac{1}{2}x'' + 3x' + 4x = 0, \quad x(0) = 2, \quad x'(0) = 0.$$

Put your answer in the form $x(t) = Ce^{at}\cos(bt - \alpha)$ if this makes sense. Sketch the graph of x = x(t).

Solution. We try $x = e^{rt}$. We must study the characteristic polynomial

$$\frac{1}{2}r^2 + 3r + 4 = 0.$$

Multiply both sides by 2 and factor:

$$r^{2} + 6r + 8 = 0$$

 $(r+2)(r+4) = 0$

So r = -2 and r = -4 are the roots of the characteristic polynomial. The general solution of the Differential Equation is

$$x = c_1 e^{-2x} + c_2 e^{-4x}.$$

We use the initial conditions to evaluate the constants. We compute

$$x = c_1 e^{-2x} + c_2 e^{-4x}$$
$$x' = -2c_1 e^{-2x} - 4c_2 e^{-4x}$$

It follows that

$$2 = c_1 + c_2 0 = -2c_1 - 4c_2$$

Replace Equation 2 with Equation 2 plus 2 times Equation 1:

$$2 = c_1 + c_2$$
$$4 = -2c_2$$

We conclude that $c_2 = -2$ and $c_1 = 4$. Thus,

$$x = 4e^{-2t} - 2e^{-4t}$$

When we graph this curve, we might want to factor out the bigger term:

$$x = 4e^{-2t}\left(1 - \frac{1}{2}e^{-2t}\right)$$

We notice the factor $(1-\frac{1}{2}e^{-2t})$ starts at $\frac{1}{2}$ (when t=0) and degrees towards 0. So the graph of

$$x = 4e^{-2t}(1 - \frac{1}{2}e^{-2t})$$

looks a lot like, and lives under, the graph of $x = 4e^{-2t}$. We know the graph of the exponential function $x = 4e^{-2t}$.

Check. We plug

$$x = 4e^{-2t} - 2e^{-4t}$$
$$x' = -8e^{-2t} + 8e^{-4t}$$
$$x'' = 16e^{-2t} - 32e^{-4t}$$

into $\frac{1}{2}x'' + 3x' + 4x$ and obtain

$$(1/2)(16e^{-2t} - 32e^{-4t}) + 3(-8e^{-2t} + 8e^{-4t}) + 4(4e^{-2t} - 2e^{-4t})$$

$$= e^{-2t}(8 - 24 + 16) + e^{-4t}(-16 + 24 - 8) = 0\checkmark$$

We also see that $x(0) = 4 - 2 = 2\checkmark$ and x'(0) = -8 + 8 = 0.

Our proposed solution does everything it is supposed to do. It is correct. The picture is on the next page. Picture for 3,4 #15

We are supposed to draw
$$X = 4e^{-2t} - 2e^{-4t}$$

 $X = 4e^{-2t} (1 - \frac{1}{2}e^{-2t})$
Notice that $1 - \frac{1}{2}e^{-2t}$ is equal to $\frac{1}{2}$ when $t = 0$
and as t grows toward infinity $1 - \frac{1}{2}e^{-2t}$ grows to 1
The graph we are supposed to draw is always a positive
first from $\sqrt{2}$ $X = 4e^{-2t}$
 4
The graph of $X = 4e^{-2t}$
The graph of $X = 4e^{-2t}$