Problem 15 in Section 3.4. Solve the Initial Problem

$$
\frac{1}{2} x^{\prime \prime}+3 x^{\prime}+4 x=0, \quad x(0)=2, \quad x^{\prime}(0)=0
$$

Put your answer in the form $x(t)=C e^{a t} \cos (b t-\alpha)$ if this makes sense. Sketch the graph of $x=x(t)$.

Solution. We try $x=e^{r t}$. We must study the characteristic polynomial

$$
\frac{1}{2} r^{2}+3 r+4=0
$$

Multiply both sides by 2 and factor:

$$
\begin{gathered}
r^{2}+6 r+8=0 \\
(r+2)(r+4)=0
\end{gathered}
$$

So $r=-2$ and $r=-4$ are the roots of the characteristic polynomial. The general solution of the Differential Equation is

$$
x=c_{1} e^{-2 x}+c_{2} e^{-4 x} .
$$

We use the initial conditions to evaluate the constants. We compute

$$
\begin{aligned}
x & =c_{1} e^{-2 x}+c_{2} e^{-4 x} \\
x^{\prime} & =-2 c_{1} e^{-2 x}-4 c_{2} e^{-4 x}
\end{aligned}
$$

It follows that

$$
\begin{aligned}
& 2=c_{1}+c_{2} \\
& 0=-2 c_{1}-4 c_{2}
\end{aligned}
$$

Replace Equation 2 with Equation 2 plus 2 times Equation 1:

$$
\begin{aligned}
& 2=c_{1}+c_{2} \\
& 4=\quad-2 c_{2}
\end{aligned}
$$

We conclude that $c_{2}=-2$ and $c_{1}=4$. Thus,

$$
x=4 e^{-2 t}-2 e^{-4 t}
$$

When we graph this curve, we might want to factor out the bigger term:

$$
x=4 e^{-2 t}\left(1-\frac{1}{2} e^{-2 t}\right)
$$

We notice the the factor $\left(1-\frac{1}{2} e^{-2 t}\right)$ starts at $\frac{1}{2}$ (when $t=0$) and degrees towards 0 . So the graph of

$$
x=4 e^{-2 t}\left(1-\frac{1}{2} e^{-2 t}\right)
$$

looks a lot like, and lives under, the graph of $x=4 e^{-2 t}$. We know the graph of the exponential function $x=4 e^{-2 t}$.

Check. We plug

$$
\begin{aligned}
x & =4 e^{-2 t}-2 e^{-4 t} \\
x^{\prime} & =-8 e^{-2 t}+8 e^{-4 t} \\
x^{\prime \prime} & =16 e^{-2 t}-32 e^{-4 t}
\end{aligned}
$$

into $\frac{1}{2} x^{\prime \prime}+3 x^{\prime}+4 x$ and obtain

$$
\begin{gathered}
(1 / 2)\left(16 e^{-2 t}-32 e^{-4 t}\right) \\
+3\left(-8 e^{-2 t}+8 e^{-4 t}\right) \\
+4\left(4 e^{-2 t}-2 e^{-4 t}\right) \\
=e^{-2 t}(8-24+16)+e^{-4 t}(-16+24-8)=0 \checkmark
\end{gathered}
$$

We also see that $x(0)=4-2=2 \checkmark$ and $x^{\prime}(0)=-8+8=0$.
Our proposed solution does everything it is supposed to do. It is correct. The picture is on the next page.

Picture for $3,4 \# 15$
We are supposed to draw $x=4 e^{-2 t}-2 e^{-4 t}$

$$
x=4 e^{-2 t}\left(1-\frac{1}{2} e^{-2 t}\right)
$$

Notice that $1-\frac{1}{2} e^{-2 t}$ in equal to $\frac{1}{2}$ when $t=0$
and as grows toward infinity $1-\frac{1}{2} e^{-2+}$ grows to 1
The graph we are supposed to drum is always a positive fraction or $\quad X=4 e^{-x t}$

