Problem 5 in Section 3.3. Find the general solution of y'' + 6y' + 9y = 0.

Solution. We try $y=e^{rx}$. We plug $y,\ y'=re^{rx}$ and $y''=r^2e^{rx}$ into the Differential Equation. We want

$$r^2e^{rx} + 6re^{rx} + 9e^{rx} = 0.$$

We want $e^{rx}(r^2+6r+9)=0$. If a product is zero, one of the factors must be zero. The function e^{rx} is never zero; so we want $r^2+6r+9=0$. We want $(r+3)^2=0$. It follows that $y=e^{-3x}$ and $y=xe^{-3x}$ are solutions of the given linear homogeneous Differential Equation with constant coefficients. The general solution of y''+6y'+9y=0 is $y=c_1e^{-3x}+c_2xe^{-3x}$.

Check. We plug

$$y = c_1 e^{-3x} + c_2 x e^{-3x}$$

$$y' = -3c_1 e^{-3x} + c_2 e^{-3x} - 3c_2 x e^{-3x}$$

$$= (-3c_1 + c_2)e^{-3x} - 3c_2 x e^{-3x}$$

$$y'' = -3(-3c_1 + c_2)e^{-3x} - 3c_2 e^{-3x} + 9c_2 x e^{-3x}$$

$$= (9c_1 - 6c_2)e^{-3x} + 9c_2 x e^{-3x}$$

into y'' + 6y' + 9y and obtain

$$\begin{cases}
\left((9c_1 - 6c_2)e^{-3x} + 9c_2xe^{-3x} \right) \\
+6\left((-3c_1 + c_2)e^{-3x} - 3c_2xe^{-3x} \right) \\
+9\left(c_1e^{-3x} + c_2xe^{-3x} \right)
\end{cases}$$

$$= [(9 - 18 + 9)c_1 + (-6 + 6)c_2]e^{-3x} + (9 - 18 + 9)c_2xe^{-3x} = 0.$$