Problem 49 in Section 3.3. Solve the Initial Problem

$$
y^{\prime \prime \prime \prime}=y^{\prime \prime \prime}+y^{\prime \prime}+y^{\prime}+2 y, \quad y(0)=0, y^{\prime}(0)=0, \quad y^{\prime \prime}(0)=0, \quad y^{\prime \prime \prime}(0)=30
$$

Hint: one solution is $y=\cos (2 x)$.
Solution. Write the Differential Equation in the form

$$
y^{\prime \prime \prime \prime}-y^{\prime \prime \prime}-y^{\prime \prime}-y^{\prime}-2 y .
$$

We try $y=e^{r x}$. We plug $y, y^{\prime}=r e^{r x}, y^{\prime \prime}=r^{2} e^{r x}, y^{\prime \prime \prime}=r^{3} e^{r x}$, and $y^{\prime \prime \prime \prime}=r^{4} e^{r x}$ into the Differential Equation. We want

$$
r^{4} e^{r x}-r^{3} e^{r x}-r^{2} e^{r x}-r e^{r x}-2 e^{r x}=0 .
$$

We want

$$
e^{r x}\left(r^{4}-r^{3}-r^{2}-r-2\right)=0
$$

If a product is zero, one of the factors must be zero. The function $e^{r x}$ is never zero; so we want

$$
r^{4}-r^{3}-r^{2}-r-2=0
$$

If a polynomial with integer coefficients has a rational root, then that rational root is a factor of the constant term divided by a factor of the leading coefficient. In particular, if the above polynomial has any rational roots, then these roots are a factor of 2 divided by a factor of 1 . In other words, the only possible rational roots of our polynomial are ± 1 or ± 2. Lets, see if any of those four numbers is a root of our polynomial.

Is $r=1$ a root of our polynomial? Is $1^{4}-1^{3}-1^{2}-1-2=0$? No. So we try another one.

Is $r=-1$ a root of our polynomial? Is $(-1)^{4}-(-1)^{3}-(-1)^{2}-(-1)-2=0$? Is $1+1-1+1-2=0$? Yes! So $r+1$ is a factor of $r^{4}-r^{3}-r^{2}-r-2$. To find the other factor, do long division (or do it in your head). At any rate,

$$
r^{4}-r^{3}-r^{2}-r-2=(r+1)\left(r^{3}-2 r^{2}+r-2\right)
$$

We still want to factor $r^{3}-2 r^{2}+r-2$. The only possible rational roots are ± 1 or ± 2. It turns out that neither 1 nor -1 is a root; however, 2 is a root and

$$
\left(r^{3}-2 r^{2}+r-2\right)=(r-2)\left(r^{2}+1\right)
$$

It follows that

$$
r^{4}-r^{3}-r^{2}-r-2=(r+1)(r-2)\left(r^{2}+1\right)
$$

The roots of $r^{4}-r^{3}-r^{2}-r-2$ are $-1,2, i,-i$ and $e^{-x}, e^{2 x}, \cos x$ and $\sin x$ are four linearly independent functions which are solutions of the homogeneous
linear Differential Equation. The general solution of the Differential equation is

$$
y=c_{1} e^{-x}+c_{2} e^{2 x}+c_{3} \cos x+c_{4} \sin x
$$

Now we evaluate the constants. Take the derivatives:

$$
\begin{aligned}
y & =c_{1} e^{-x}+c_{2} e^{2 x}+c_{3} \cos x+c_{4} \sin x \\
y^{\prime} & =-c_{1} e^{-x}+2 c_{2} e^{2 x}-c_{3} \sin x+c_{4} \cos x \\
y^{\prime \prime} & =c_{1} e^{-x}+4 c_{2} e^{2 x}-c_{3} \cos x-c_{4} \sin x \\
y^{\prime \prime \prime} & =-c_{1} e^{-x}+8 c_{2} e^{2 x}+c_{3} \sin x-c_{4} \cos x
\end{aligned}
$$

We want

$$
\begin{aligned}
& 0=y(0)=c_{1} e^{-(0)}+c_{2} e^{2(0)}+c_{3} \cos (0)+c_{4} \sin (0) \\
& 0=y^{\prime}(0)=-c_{1} e^{-(0)}+2 c_{2} e^{2(0)}-c_{3} \sin (0)+c_{4} \cos (0) \\
& 0=y^{\prime \prime}(0)=c_{1} e^{-(0)}+4 c_{2} e^{2(0)}-c_{3} \cos (0)-c_{4} \sin (0) \\
& 30=y^{\prime \prime \prime}(0)=-c_{1} e^{-(0)}+8 c_{2} e^{2(0)}+c_{3} \sin (0)-c_{4} \cos (0)
\end{aligned}
$$

We want

$$
\begin{aligned}
0 & =c_{1}+c_{2}+c_{3} \\
0 & =-c_{1}+2 c_{2}+c_{4} \\
0 & =c_{1}+4 c_{2}-c_{3} \\
30 & =-c_{1}+8 c_{2}-c_{4}
\end{aligned}
$$

Replace Equation 2 with Equation 2 plus Equation 1.
Replace Equation 3 with Equation 3 minus Equation 1.
Replace Equation 4 with Equation 4 plus Equation 1.

$$
\begin{aligned}
0 & =c_{1}+c_{2}+c_{3} \\
0 & =+3 c_{2}+c_{3}+c_{4} \\
0 & =+3 c_{2}-2 c_{3} \\
30 & =+9 c_{2}+c_{3}-c_{4}
\end{aligned}
$$

Replace Equation 3 with Equation 3 minus Equation 2.
Replace Equation 4 with Equation 4 minus 3 times Equation 2.

$$
\begin{array}{rlrlrl}
0 & = & c_{1} & +c_{2}+c_{3} \\
0 & = & & +3 c_{2} & +c_{3}+c_{4} \\
0 & = & & & -3 c_{3}-c_{4} \\
30 & = & & & -2 c_{3}-4 c_{4}
\end{array}
$$

Replace Equation 4 with Equation 4 minus $\frac{2}{3}$ times Equation 3

$$
\begin{array}{rlrl}
0 & =c_{1}+c_{2}+c_{3} \\
0 & = & +3 c_{2}+c_{3}+c_{4} \\
0 & = & & -3 c_{3}-c_{4} \\
30 & = & & -\frac{10}{3} c_{4}
\end{array}
$$

Thus, $c_{4}=30\left(-\frac{3}{10}\right)=-9, c_{3}=3, c_{2}=2$, and $c_{1}=-5$. The solution of the Initial Value Problem is

$$
y=-5 e^{-x}+2 e^{2 x}+3 \cos x-9 \sin x
$$

Check. Plug the derivatives

$$
\begin{aligned}
y & =-5 e^{-x}+2 e^{2 x}+3 \cos x-9 \sin x \\
y^{\prime} & =5 e^{-x}+4 e^{2 x}-3 \sin x-9 \cos x \\
y^{\prime \prime} & =-5 e^{-x}+8 e^{2 x}-3 \cos x+9 \sin x \\
y^{\prime \prime \prime} & =5 e^{-x}+16 e^{2 x}+3 \sin x+9 \cos x \\
y^{\prime \prime \prime \prime} & =-5 e^{-x}+32 e^{2 x}+3 \cos x-9 \sin x
\end{aligned}
$$

into $y^{\prime \prime \prime \prime}-y^{\prime \prime \prime}-y^{\prime \prime}-y^{\prime}-2 y$ and obtain

$$
\begin{aligned}
& \left\{\begin{array}{l}
\left(-5 e^{-x}+32 e^{2 x}+3 \cos x-9 \sin x\right) \\
-\left(5 e^{-x}+16 e^{2 x}+3 \sin x+9 \cos x\right) \\
-\left(-5 e^{-x}+8 e^{2 x}-3 \cos x+9 \sin x\right) \\
-\left(5 e^{-x}+4 e^{2 x}-3 \sin x-9 \cos x\right) \\
-2\left(-5 e^{-x}+2 e^{2 x}+3 \cos x-9 \sin x\right)
\end{array}\right. \\
& =\left\{\begin{array}{l}
(-5-5+5-5+10) e^{-x} \\
+(32-16-8-4-4) e^{2 x} \\
+(3-9+3+9-6) \cos x \\
+(-9-3-9+3+18) \sin x
\end{array}\right.
\end{aligned}
$$

This sum is zero. \checkmark
We also see that

$$
\begin{aligned}
y(0) & =-5+2+3=0 \checkmark \\
y^{\prime}(0) & =5+4-9=0 \checkmark \\
y^{\prime \prime}(0) & =-5+8-3=0 \checkmark \\
y^{\prime \prime \prime}(0) & =5+16+9=30 \checkmark
\end{aligned}
$$

Our proposed solution does everything that it is supposed to do. It is correct.

