Problem 1 in Section 3.3. Find the general solution of y'' - 4y = 0.

Solution. We try $y = e^{rx}$. We plug y, $y' = re^{rx}$ and $y'' = r^2 e^{rx}$ into the Differential Equation. We want

$$r^2 e^{rx} - 4e^{rx} = 0.$$

We want $e^{rx}(r^2 - 4) = 0$. If a product is zero, one of the factors must be zero. The function e^{rx} is never zero; so we want $r^2 - 4 = 0$. In other words, r = 2 or r = -2. The general solution of y'' - 4y = 0 is $y = c_1 e^{2x} + c_2 e^{-2x}$.

Check. We plug

$$y = c_1 e^{2x} + c_2 e^{-2x}$$

$$y' = 2c_1 e^{2x} - 2c_2 e^{-2x}$$

$$y'' = 4c_1 e^{2x} + 4c_2 e^{-2x}$$

into y'' - 4y and obtain

$$\left(4c_1e^{2x} + 4c_2e^{-2x}\right) - 4\left(c_1e^{2x} + c_2e^{-2x}\right)$$

= $(4c_1 - 4c_1)e^{2x} + (4c_2 - 4c_2)e^{-2x} = 0.\checkmark$