Problem 1 in Section 3.3. Find the general solution of $y^{\prime \prime}-4 y=0$.
Solution. We try $y=e^{r x}$. We plug $y, y^{\prime}=r e^{r x}$ and $y^{\prime \prime}=r^{2} e^{r x}$ into the Differential Equation. We want

$$
r^{2} e^{r x}-4 e^{r x}=0
$$

We want $e^{r x}\left(r^{2}-4\right)=0$. If a product is zero, one of the factors must be zero. The function $e^{r x}$ is never zero; so we want $r^{2}-4=0$. In other words, $r=2$ or $r=-2$. The general solution of $y^{\prime \prime}-4 y=0$ is $y=c_{1} e^{2 x}+c_{2} e^{-2 x}$.

Check. We plug

$$
\begin{aligned}
y & =c_{1} e^{2 x}+c_{2} e^{-2 x} \\
y^{\prime} & =2 c_{1} e^{2 x}-2 c_{2} e^{-2 x} \\
y^{\prime \prime} & =4 c_{1} e^{2 x}+4 c_{2} e^{-2 x}
\end{aligned}
$$

into $y^{\prime \prime}-4 y$ and obtain

$$
\begin{aligned}
& \left(4 c_{1} e^{2 x}+4 c_{2} e^{-2 x}\right)-4\left(c_{1} e^{2 x}+c_{2} e^{-2 x}\right) \\
= & \left(4 c_{1}-4 c_{1}\right) e^{2 x}+\left(4 c_{2}-4 c_{2}\right) e^{-2 x}=0 . \checkmark
\end{aligned}
$$

