Problem 26 in Section 3.2. Find a particular solution for each of the following Differential Equations.
(a) $y^{\prime \prime}+2 y=4$,
(b) $y^{\prime \prime}+2 y=6 x$,
(c) $y^{\prime \prime}+2 y=6 x+4$.

We learn how to find particular solutions of non-homogeneous linear Differential Equations with constant coefficients in section 3.5. The basic technique is, "Guess the form of the answer and then adjust the coefficients". This problem serves as a warm-up for the procedure.

Solution. If we want to plug some function into $y^{\prime \prime}+y$ and end up with a constant; we should probably plug a constant in. Which constant should we plug in. Either you blurt the answer out or you think "If $y=C$ and $y^{\prime \prime}+2 y=C$, then $0+2 C=4$; so we should take $C=2$. Sure enough, $y=2$ is a solution of $y^{\prime \prime}+2 y=4$.

Similarly, we try $y=A x+B$ as a candidate for a solution for $y^{\prime \prime}+2 y=6 x$ and calculate $y^{\prime}=A$ and $y^{\prime \prime}=0$. If $y=A x+B$ is a solution of $y^{\prime \prime}+2 y=6 x$, then $0+2(A x+B)=6 x$. We better have $2 A=6$ and $B=0$. Thus, $y=3 x$ is a solution of $y^{\prime \prime}+2 y=6 x$.

For (c) you could either combine the answers to (a) and (b) are start from scratch with $y=A x+B$. At any rate $y=3 x+2$ is a solution of $y^{\prime \prime}+2 y=6 x+4$.

