Problem 21 in Section 3.2. The problem tells us that $y_{\text {homog }}=c_{1} \cos x+$ $c_{2} \sin x$ is the general solution of the homogeneous problem $y^{\prime \prime}+y=0$ and $y_{\text {partic }}=3 x$ is a particular solution of the Differential Equation $y^{\prime \prime}+y=3 x$. The problem tells us to find the solution of the Initial Value Problem

$$
y^{\prime \prime}+y=3 x, \quad y(0)=2, \quad \text { and } \quad y^{\prime}(0)=-2
$$

Solution. The general solution of $y^{\prime \prime}+y=3 x$ is

$$
y=c_{1} \cos x+c_{2} \sin x+3 x .
$$

We must evaluate the constants. We calculate

$$
y^{\prime}=-c_{1} \sin x+c_{2} \cos x+3
$$

Plug $x=0$ into $y$ and $y^{\prime}$. We must solve

$$
\begin{aligned}
2 & =c_{1} \cos (0)+c_{2} \sin (0)+3(0) \\
-2 & =-c_{1} \sin (0)+c_{2} \cos (0)+3
\end{aligned}
$$

We must solve

$$
\begin{aligned}
2 & =c_{1} \\
-2 & =c_{2}+3
\end{aligned}
$$

We conclude that $c_{1}=2$ and $c_{2}=-5$. The solution of the Initial Value Problem is

$$
y=2 \cos x-5 \sin x+3 x
$$

Check. We compute

$$
\begin{aligned}
y & =2 \cos x-5 \sin x+3 x \\
y^{\prime} & =-2 \sin x-5 \cos x+3 \\
y^{\prime \prime} & =-2 \cos x+5 \sin x
\end{aligned}
$$

Plug $y, y^{\prime}$, and $y^{\prime \prime}$ into the left side of the Differential Equation. We see that

$$
y^{\prime \prime}+y=(-2 \cos x+5 \sin x)+(2 \cos x-5 \sin x+3 x)=3 x . \checkmark
$$

We compute $y(0)=2(1)-5(0)+3(0)=2 \checkmark$ and $y^{\prime}(0)=-2 \sin (0)-5 \cos (0)+$ $3=-5+3=-2 \checkmark$. Our proposed answer does everything it is supposed to do. Our answer is correct.

