Problem 16 in Section 3.2. The problem tells us that $y_1 = e^x$, $y_2 = e^{2x}$, and $y_3 = xe^{2x}$ all are solutions of the Differential equation y''' - 5y'' + 8y' - 4y = 0. We are supposed to solve the Initial Value Problem

$$y''' - 5y'' + 8y' - 4y = 0$$
, $y(0) = 1$, $y'(0) = 4$, $y''(0) = 0$.

Solution. The general solution of y''' - 5y'' + 8y' - 4y = 0 is

$$y = c_1 e^x + c_2 e^{2x} + c_3 x e^{2x}.$$

Our job is to evaluate the constants. We calculate

$$y' = c_1 e^x + 2c_2 e^{2x} + c_3 e^{2x} + 2c_3 x e^{2x}$$

$$= c_1 e^x + (2c_2 + c_3)e^{2x} + 2c_3 x e^{2x}$$

$$y'' = c_1 e^x + 2(2c_2 + c_3)e^{2x} + 2c_3 e^{2x} + 4c_3 x e^{2x}$$

$$= c_1 e^x + (4c_2 + 4c_3)e^{2x} + 4c_3 x e^{2x}$$

We must solve

$$1 = c_1 + c_2$$

$$4 = c_1 + 2c_2 + c_3$$

$$0 = c_1 + 4c_2 + 4c_3$$

Replace Equation 2 by Equation 2 minus Equation 1. Replace Equation 3 by Equation 3 minus Equation 1.

$$\begin{cases}
1 = c_1 + c_2 \\
3 = c_2 + c_3 \\
-1 = 3c_2 + 4c_3
\end{cases}$$

Replace Equation 3 by Equation 3 minus 3 times Equation 2.

$$\begin{cases}
1 = c_1 + c_2 \\
3 = c_2 + c_3 \\
-10 = c_3
\end{cases}$$

Thus, $c_3 = -10$, $c_2 = 13$, and $c_1 = -12$.

The solution of the Initial Value Problem is

$$y = -12e^x + 13e^{2x} - 10xe^{2x}.$$

Check. We compute

$$y = -12e^{x} + 13e^{2x} - 10xe^{2x}$$

$$y' = -12e^{x} + 26e^{2x} - 10e^{2x} - 20xe^{2x}$$

$$= -12e^{x} + 16e^{2x} - 20xe^{2x}$$

$$y'' = -12e^{x} + 32e^{2x} - 20e^{2x} - 40xe^{2x}$$

$$= -12e^{x} + 12e^{2x} - 40xe^{2x}$$

$$y''' = -12e^{x} + 24e^{2x} - 40e^{2x} - 80xe^{2x}$$

$$= -12e^{x} - 16e^{2x} - 80xe^{2x}$$

We plug y, y', y'', and y''' into y''' - 5y'' + 8y' - 4y and obtain

$$\begin{cases}
-12e^{x} - 16e^{2x} - 80xe^{2x} \\
-5(-12e^{x} + 12e^{2x} - 40xe^{2x}) \\
+8(-12e^{x} + 16e^{2x} - 20xe^{2x}) \\
-4(-12e^{x} + 13e^{2x} - 10xe^{2x})
\end{cases}$$

$$= e^{x}(-12+60-96+48) + e^{2x}(-16-60+128-52) + xe^{2x}(-80+200-160+40)$$

= $0.\checkmark$

Also we compute $y(0)=-12e^0+13e^0-10(0)=1\checkmark$, $y'(0)=-12e^0+16e^0-20(0)=4\checkmark$, and $y''(0)=-12e^0+12e^0-40(0)=0\checkmark$.

The proposed solution does everything it is supposed to do. It is correct.