Problem 29 in Section 3.1. Show that $y_{1}=x^{2}$ and $y_{2}=x^{3}$ are both solutions of the Initial Value Problem

$$
x^{2} y^{\prime \prime}-4 x y^{\prime}+6 y=0, \quad y(0)=0, \quad y^{\prime}(0)=0
$$

Why doesn't the Existence and Uniqueness Theorem apply to this problem?
Solution. We answer the question first? The Existence and Uniqueness Theorem states that if $P_{1}(x), P_{2}(x)$, and $Q(x)$ are all continuous on some interval I which contains a, then the Initial Value Problem

$$
y^{\prime \prime}+P_{1}(x) y^{\prime}+P_{0}(x) y=Q(x), \quad y(a)=b_{0}, \quad y^{\prime}(a)=b_{1}
$$

has a unique solution which is defined on all of I. To put $x^{2} y^{\prime \prime}-4 x y^{\prime}+6 y=0$ in the proper form, one must divide by x^{2} :

$$
y^{\prime \prime}-\frac{4}{x} y^{\prime}+\frac{6}{x^{2}} y=0
$$

So $P_{1}(x)=-\frac{4}{x}, P_{2}(x)=\frac{6}{x^{2}}$, and $Q(x)=0$. Observe that neither $P_{1}(x)$ nor $P_{2}(x)$ is continuous at $x=0$. So the Existence and Uniqueness Theorem tells us nothing about the Initial Value Problem.

We check that $y_{1}=x^{2}$ is a solution of the IVP. Plug $y_{1}=x^{2}, y_{1}^{\prime}=2 x, y_{1}^{\prime \prime}=2$ into $x^{2} y^{\prime \prime}-4 x y^{\prime}+6 y$ to obtain

$$
x^{2}(2)-4 x(2 x)+6\left(x^{2}\right)=x^{2}(2-8+6)=0 . \checkmark
$$

Calculate $y_{1}(0)=0^{2}=0 \checkmark$ and $y_{1}^{\prime}(0)=2(0)=0 \checkmark$.
We check that $y_{2}=x^{3}$ is a solution of the IVP. Plug $y_{2}=x^{3}, y_{2}^{\prime}=3 x^{2}$, $y_{2}^{\prime \prime}=6 x$ into $x^{2} y^{\prime \prime}-4 x y^{\prime}+6 y$ to obtain

$$
x^{2}(6 x)-4 x\left(3 x^{2}\right)+6\left(x^{3}\right)=x^{3}(6-12+6)=x^{3}(0)=0 . \checkmark
$$

Calculate $y_{2}(0)=0^{3}=0 \checkmark$ and $y_{2}^{\prime}(0)=3(0)^{2}=0 \checkmark$.

