Problem 20 in Section 3.1. Are the functions $f(x)=\pi$ and $g(x)=\cos ^{2} x+$ $\sin ^{2} x$ linearly independent or linearly dependent?

Solution This problem is tricky. Actually both functions are constant. Indeed $g(x)=1$ for all x. So, $f(x)$ is a constant multiple of $g(x)$. That is $f(x)=\pi g(x)$ for all x. We conclude that

$$
f(x) \text { and } g(x) \text { are linearly dependent. }
$$

The point is: The general solution of a second order homogeneous linear Differential Equation has the form $c_{1} y_{1}+c_{2} y_{2}$ where y_{1} and y_{2} are linearly independent (i.e., really different) solutions of the Differential Equation and c_{1} and c_{2} are arbitrary constants. So, $c_{1} \pi+c_{2}\left(\cos ^{2} x+\sin ^{2} x\right)$ is not the general solution of any second order homogeneous linear Differential Equation.

