Problem 2 in Section 3.1.

(a) Verify that $y_{1}=e^{3 x}$ and $y_{2}=e^{-3 x}$ both are solutions of the Differential Equation $y^{\prime \prime}-9 y=0$.
(b) Solve the Initial Value Problem:

$$
y^{\prime \prime}-9 y=0, \quad y(0)=-1, \quad y^{\prime}(0)=15 .
$$

Solution (a) We compute $y_{1}^{\prime}=3 e^{3 x}$ and $y_{1}^{\prime \prime}=9 e^{3 x}$. Thus,

$$
y_{1}^{\prime \prime}-9 y=9 e^{3 x}-9 e^{3 x}=0,
$$

as expected. In a similar manner, we compute $y_{2}^{\prime}=-3 e^{-3 x}$ and $y_{2}^{\prime \prime}=9 e^{-3 x}$. Thus,

$$
y_{2}^{\prime \prime}-9 y_{2}=9 e^{-3 x}-9 e^{-3 x}=0
$$

as expected. This completes (a).
(b) We know from (a) that

$$
y=c_{1} e^{3 x}+c_{2} e^{-3 x}
$$

is the general solution of the Differential Equation. Now we find the constants that allow y to satisfy the Initial Conditions.

Plug $x=0$ into the equations

$$
\begin{aligned}
y & =c_{1} e^{3 x}+c_{2} e^{-3 x} \\
y^{\prime} & =3 c_{1} e^{3 x}-3 c_{2} e^{-3 x}
\end{aligned}
$$

to learn that

$$
\begin{aligned}
-1 & =c_{1}+c_{2} \\
15 & =3 c_{1}-3 c_{2}
\end{aligned}
$$

The solution set is unchanged if we replace equation 2 with equation 2 minus 3 equation 1:

$$
\begin{aligned}
-1 & =c_{1}+c_{2} \\
18 & =\quad-6 c_{2}
\end{aligned}
$$

So, $c_{2}=-3$ and $c_{1}=2$ Our answer is $y=2 e^{3 x}-3 e^{-3 x}$.
Check. We compute $y^{\prime}=6 e^{3 x}+9 e^{-3 x}$ and $y^{\prime \prime}=18 e^{3 x}-27 e^{-3 x}$. We plug y, y^{\prime}, and $y^{\prime \prime}$ into $y^{\prime \prime}-9 y$ and get

$$
18 e^{3 x}-27 e^{-3 x}-9\left(2 e^{3 x}-3 e^{-3 x}\right)
$$

and this is zero. \checkmark We also evaluate

$$
y(0)=2 e^{0}-3 e^{0}=-1 \checkmark \quad \text { and } \quad y^{\prime}(0)=6 e^{0}+9 e^{0}=15 . \checkmark
$$

Our answer does everything it is supposed to do. It is correct.

