Problem 19 in Section 3.1. Show that $y_{1}=1$ and $y_{2}=\sqrt{x}$ are both solutions of $y y^{\prime \prime}+\left(y^{\prime}\right)^{2}=0$, but the sum $y_{1}+y_{2}=1+\sqrt{x}$ is not a solution of $y y^{\prime \prime}+\left(y^{\prime}\right)^{2}=0$.

The point of this problem is that our tricks for linear Differential Equations do not work for non-linear Differential Equations. In particular if y_{1} and y_{2} both are solutions of a homogeneous linear Differential Equation, then $y_{1}+y_{2}$ is also a solution of the Differential Equation. This statement is not true for non-linear Differential Equations.

Solution.Plug $y_{1}=1, y_{1}^{\prime}=0$, and $y_{1}^{\prime \prime}=0$ into $y y^{\prime \prime}+\left(y^{\prime}\right)^{2}$ and obtain $1(0)+0^{2}=0$, as expected.

Plug $y_{2}=x^{1 / 2}, y^{\prime}=(1 / 2) x^{-1 / 2}$, and $y^{\prime \prime}=(-1 / 4) x^{-3 / 2}$ into $y y^{\prime \prime}+\left(y^{\prime}\right)^{2}$ and obtain

$$
\begin{aligned}
& x^{1 / 2}(-1 / 4) x^{-3 / 2}+\left((1 / 2) x^{-1 / 2}\right)^{2} \\
= & (-1 / 4) x^{-1}+(1 / 4) x^{-1}=0,
\end{aligned}
$$

as expected.
On the other hand, when we plug $y_{1}+y_{2}=(1+\sqrt{x})$, $\left(y_{1}+y_{2}\right)^{\prime}=(1 / 2) x^{-1 / 2}$, and $\left(y_{1}+y_{2}\right)^{\prime \prime}=(-1 / 4) x^{-3 / 2}$ into $y y^{\prime \prime}+\left(y^{\prime}\right)^{2}$, we obtain

$$
\begin{aligned}
& (1+\sqrt{x})(-1 / 4) x^{-3 / 2}+\left((1 / 2) x^{-1 / 2}\right)^{2} \\
= & (-1 / 4) x^{-3 / 2}-(1 / 4) x^{-1}+(1 / 4) x^{-1} \\
= & (-1 / 4) x^{-3 / 2} .
\end{aligned}
$$

This is not zero. $y_{1}+y_{2}$ is not a solution of $y y^{\prime \prime}+\left(y^{\prime}\right)^{2}=0$.

