Problem 17 in Section 3.1. Show that $y=\frac{1}{x}$ is a solution of $y^{\prime}+y^{2}=0$, but that $y=\frac{c}{x}$ is not a solution of $y^{\prime}+y^{2}=0$, unless c happens to be zero or one.

The point of this problem is that our tricks for linear Differential Equations do not work for non-linear Differential Equations. In particular if y_{1} is a solution of a homogeneous linear Differential Equation, then $c y_{1}$ is also a solution of the Differential Equation. This statement is not true for non-linear Differential Equations.

Solution Plug $y=\frac{1}{x}$ and $y^{\prime}=\frac{-1}{x^{2}}$ into $y^{\prime}+y^{2}$ and get $\frac{-1}{x^{2}}+\left(\frac{1}{x}\right)^{2}$, which is zero.

On the other hand, we we plug $y=\frac{c}{x}$ and $y^{\prime}=\frac{-c}{x^{2}}$ into $y^{\prime}+y^{2}$ we obtain $\frac{-c}{x^{2}}+\left(\frac{c}{x}\right)^{2}=\frac{c^{2}-c}{x^{2}}$. The function $\frac{c^{2}-c}{x^{2}}$ is not the zero function unless $c(c-1)-0$; that is unless $c=0$ or $c-1=0$.

