Problem 1 in Section 2.4. Use Euler's method to approximate $y(\frac{1}{2})$ where y is a solution of the Initial Value Problem

$$y' = -y$$
 and $y(0) = 2$.

Use two steps only; in other words, take $h = \frac{1}{4}$. Compare your approximation of $y(\frac{1}{2})$ to the actual value of $y(\frac{1}{2})$.

Solution. We put the picture on the next page. The number y_2 is our approximation of $y(\frac{1}{2})$.

We first find y_1 . The line segment from (0,2) to $(\frac{1}{4},y_1)$ has slope equal to $m_1=-2$:

$$\frac{y_1-2}{\frac{1}{4}}=-2, \quad y_1=2-\frac{1}{2}=\frac{3}{2}.$$

Now we find y_2 . The line segment from $(\frac{1}{4}, \frac{3}{2})$ to $(\frac{1}{2}, y_2)$ has slope equal to $m_2 = -y_1 = -\frac{3}{2}$:

$$\frac{y_2 - \frac{3}{2}}{\frac{1}{4}} = -\frac{3}{2}, \quad y_2 = \frac{3}{2} - \frac{3}{2}\frac{1}{4} = \frac{12}{8} - \frac{3}{8} = \frac{9}{8}.$$

Euler's Method, with n=2, gives $\frac{9}{8}$ as the approximation of $y(\frac{1}{2})$.

It turns out that we can find the real value of $y(\frac{1}{2})$. To solve

$$\frac{dy}{dx} = -y,$$

separate the variables (Get all y's and dy's on one side and all x's and dx's on the other side.) then integrate.

$$\frac{dy}{y} = -dx$$

$$\int \frac{dy}{y} = -\int dx$$

$$\ln y = -x + C$$

Exponentiate both sides:

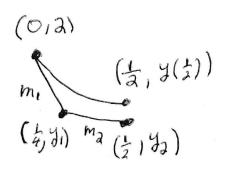
$$e^{\ln y} = e^C e^{-x}$$
$$y = e^C e^{-x}.$$

Plug in the initial condition y(0) = 2 to see that

$$2 = e^{C}$$
.

Conclude that $y=2e^{-x}$ is the solution of the Initial Value Problem. So, $y(\frac{1}{2})$ is equal to $\frac{2}{\sqrt{e}}$. If you are keeping score, the beginning of the decimal expansion for $\frac{2}{\sqrt{e}}$ is 1.2130613 and the decimal expansion of our approximation $\frac{9}{8}$ is 1.125.

Picture for 2.4 Number 1



The Smooth Curve is the real solution of the imitial Value Problem $y' = -y \quad y(0) = \lambda \quad (*)$

The piece-wise linear cyre is the Euler Method Approximation of the solution of (*) made using two steps.

M₁ is the slope of the line segment from (0,2) to (4, 4,1) M₂ is the slope of the line segment from (4,4,1) to (2,142)

We make $M_1 = f(0_1 \lambda)$ and $M_2 = f(\frac{1}{4}, 19_1)$ where $f(x_1 y_1)$ is the right side of the Differential Equation in (*). In other words $f(x_1 y_1) = -y$ $M_1 = f(0_1 \lambda) = -\lambda$ $M_2 = f(\frac{1}{4}, 19_1) = -y_1$