Problem 9 in Section 2.2. Consider the Differential Equation $\frac{d x}{d t}=x^{2}-5 x+$ 4.

- What are the equilibrium solutions of this autonomous Differential Equation?
- Draw the phase diagram for this Differential Equation.
- Are the equilibrium solutions of this Differential Equation stable or unstable?
- Sketch the solution of the Initial Value problem

$$
\begin{equation*}
\frac{d x}{d t}=x^{2}-5 x+4 \quad x(0)=x_{0} \tag{11}
\end{equation*}
$$

for a few choices of x_{0}.

- Solve the Initial Value Problem (11). (Be sure that your answer is in the form x is equal to some function of t.)

We see that $x^{2}-5 x+4=(x-1)(x-4)$. Thus, $x^{2}-5 x+4$ is equal to zero when $x=1$ or $x=4$. We conclude that $x=1$ and $x=4$ are the equilibrium solutions of the given Differential Equation. We see that

- if x is greater than four, then $(x-1)(x-4)$ is positive;
- if x is between 1 and 4 , then $(x-1)(x-4)$ is negative; and
- if x is less than 1 , then $(x-1)(x-4)$ is positive.
(The phase diagram is on the last page of this solution.) We conclude that
- if $4<x_{0}$, then the graph of $x=x(t)$ increases away from 4 as t goes to infinity;
- if $1 \leq x \leq 4$, then the graph of $x=x(t)$ decreases away from 4 and towards 1 as t goes to infinity; and
- if $x_{0}<1$, then the graph of $x=x(t)$ increases towards to 1 as t goes to infinity.

In other words,

> The function $x=4$ is an unstable equilibrium solution of $\frac{d x}{d t}=x^{2}-5 x+4$ and $x=1$ is a stable equilibrium solution.

On the last page of this solution, we sketched five solutions of the Initial Value Problem (11). In one solution x_{0} is bigger than 4 ; in one solution x_{0} is equal to 4 ; in one solution x_{0} is between 1 and 4 ; in one solution x_{0} is equal to 1 ; and in one solution x is less than 1 .

We solve $\frac{d x}{d t}=x^{2}-5 x+4$ by separating the variables and integrating:

$$
\begin{equation*}
\int \frac{d x}{x^{2}-5 x+4}=\int d t \tag{12}
\end{equation*}
$$

Factor the denominator $x^{2}-5 x+4=(x-4)(x-1)$. Use the method of partial fractions to write

$$
\frac{1}{(x-4)(x-1)}=\frac{A}{x-4}+\frac{B}{x-1} .
$$

Multiply both sides by $(x-4)(x-1)$:

$$
1=A(x-1)+B(x-4)
$$

Plug in $x=1$ to learn $B=\frac{-1}{3}$. Plug in $x=4$ to learn $A=\frac{1}{3}$. Use

$$
\frac{1}{(x-4)(x-1)}=\frac{1}{3}\left(\frac{1}{x-4}-\frac{1}{x-1}\right)
$$

to compute (12):

$$
\begin{aligned}
& \frac{1}{3} \int\left(\frac{1}{x-4}-\frac{1}{x-1}\right) d x=t+C \\
& \frac{1}{3}(\ln |x-4|-\ln |x-1|)=t+C \\
& (\ln |x-4|-\ln |x-1|)=3 t+3 C
\end{aligned}
$$

Exponentiate:

$$
\begin{aligned}
& \frac{|x-4|}{|x-1|}=e^{C} e^{3 t} \\
& \frac{x-4}{x-1}= \pm e^{C} e^{3 t}
\end{aligned}
$$

Let K be the constant $\pm e^{C}$.

$$
\begin{equation*}
\frac{x-4}{x-1}=K e^{3 t} \tag{13}
\end{equation*}
$$

Plug $t=0$ in order to learn that

$$
\begin{equation*}
\frac{x_{0}-4}{x_{0}-1}=K \tag{14}
\end{equation*}
$$

We continue to write K. We will insert (14) into our final answer. Multiply both sides of (13) by $x-1$:

$$
x-4=K e^{3 t}(x-1)
$$

Subtract $K e^{3 t} x$ from both sides and add 4 to both sides:

$$
x-K e^{3 t} x=4-K e^{3 t} .
$$

Factor 3 for each term on the left; and divide both sides by $1-K e^{3 t}$:

$$
x=\frac{4-K e^{3 t}}{1-K e^{3 t}} .
$$

Insert (14):

$$
\begin{gathered}
x=\frac{4-\left(\frac{x_{0}-4}{x_{0}-1}\right) e^{3 t}}{1-\left(\frac{x_{0}-4}{x_{0}-1}\right) e^{3 t}} . \\
x=\frac{4\left(x_{0}-1\right)-\left(x_{0}-4\right) e^{3 t}}{\left(x_{0}-1\right)-\left(x_{0}-4\right) e^{3 t}} .
\end{gathered}
$$

Check! We plug the proposed answer into $\frac{d x}{d t}-x^{2}+5 x-4$. We hope that the result simplifies to become zero. At any rate,

$$
\begin{aligned}
& \frac{d x}{d t}-x^{2}+5 x-4 \\
= & \left\{\begin{array}{l}
+\left(4\left(x_{0}-1\right)-\left(x_{0}-4\right) e^{3 t}\right)(-1)\left(\left(x_{0}-1\right)-\left(x_{0}-4\right) e^{3 t}\right)^{-2}(-3)\left(x_{0}-4\right) e^{3 t} \\
+\left(\left(x_{0}-1\right)-\left(x_{0}-4\right) e^{3 t}\right)^{-1}\left(-3\left(x_{0}-4\right) e^{3 t}\right) \\
-\left(\frac{4\left(x_{0}-1\right)-\left(x_{0}-4\right) e^{3 t}}{\left.\left(x_{0}-1\right)-\left(x_{0}-4\right)\right)^{3 t}}\right)^{2} \\
+5 \frac{4\left(x_{0}-1\right)-\left(x_{0}-4\right) e^{3 t}}{\left(x_{0}-1\right)-\left(x_{0}-4\right) e^{3 t}} \\
-4
\end{array}\right. \\
= & \frac{\begin{array}{l}
+\left(4\left(x_{0}-1\right)-\left(x_{0}-4\right) e^{3 t}\right)(-1)(-3)\left(x_{0}-4\right) e^{3 t} \\
+\left(\left(x_{0}-1\right)-\left(x_{0}-4\right) e^{3 t}\right)\left(-3\left(x_{0}-4\right) e^{3 t}\right) \\
-\left(4\left(x_{0}-1\right)-\left(x_{0}-4\right) e^{3 t}\right)^{2} \\
+5\left(4\left(x_{0}-1\right)-\left(x_{0}-4\right) e^{3 t}\right)\left(\left(x_{0}-1\right)-\left(x_{0}-4\right) e^{3 t}\right) \\
-4\left(\left(x_{0}-1\right)-\left(x_{0}-4\right) e^{3 t}\right)^{2}
\end{array}}{\left(\left(x_{0}-1\right)-\left(x_{0}-4\right) e^{3 t}\right)^{2}} \\
= & \frac{\left(\begin{array}{l}
+12\left(x_{0}-1\right)\left(x_{0}-4\right) e^{3 t}-3\left(x_{0}-4\right)^{2} e^{6 t} \\
-3\left(x_{0}-1\right)\left(x_{0}-4\right) e^{3 t}+3\left(x_{0}-4\right)^{2} e^{6 t} \\
-16\left(x_{0}-1\right)^{2}+8\left(x_{0}-1\right)\left(x_{0}-4\right) e^{3 t}-\left(x_{0}-4\right)^{2} e^{3 t} \\
+20\left(x_{0}-1\right)^{2}-20\left(x_{0}-1\right)\left(x_{0}-4\right) e^{3 t}-5\left(x_{0}-1\right)\left(x_{0}-4\right) e^{3 t}+5\left(x_{0}-4\right)^{2} e^{6 t} \\
-4\left(x_{0}-1\right)^{2}+8\left(x_{0}-1\right)\left(x_{0}-4\right) e^{3 t}-4\left(x_{0}-4\right)^{2} e^{6 t}
\end{array}\right.}{\left(\left(x_{0}-1\right)-\left(x_{0}-4\right) e^{3 t}\right)^{2}}
\end{aligned}
$$

The numerator is zero. The proposed answer is correct.
The pictures are on the next page.

Pictures for Problem 9 in Section 2.2

Phose Diagram for $\frac{d x}{d t}=x^{2}-5 x+4$

The solution of $\quad \frac{d x}{d t}=x^{2}-5 x+4 \quad x(0)=x_{0}$ for a fou choices of x_{0}

