Problem 7 in Section 2.2. Consider the Differential Equation $\frac{d x}{d t}=(x-2)^{2}$.

- What are the equilibrium solutions of this autonomous Differential Equation?
- Draw the phase diagram for this Differential Equation.
- Are the equilibrium solutions of this Differential Equation stable or unstable?
- Sketch the solution of the Initial Value problem

$$
\begin{equation*}
\frac{d x}{d t}=(x-2)^{2} \quad x(0)=x_{0} \tag{9}
\end{equation*}
$$

for a few choices of x_{0}.

- Solve the Initial Value Problem (9). (Be sure that your answer is in the form x is equal to some function of t.)

We see that $(x-2)^{2}$ is equal to zero when $x=2$. We conclude that $x=2$ is the only equilibrium solution of the given Differential Equation. We see that $(x-2)^{2}$ is positive for all x other than $x=2$. (The phase diagram is on the last page of this solution.) We conclude that

- if $2<x_{0}$, then the graph of $x=x(t)$ increases away from 2 as t goes to infinity; and
- if $x_{0}<2$, then the graph of $x=x(t)$ increases towards to 2 as t goes to infinity.

In other words,
The function $x=2$ is a semi-stable equilibrium solution of $\frac{d x}{d t}=(x-2)^{2}$. It is stable from below, but unstable from above.

On the last page of this solution, we sketched three solutions of the Initial Value Problem

$$
\frac{d x}{d t}=(x-2)^{2} \quad x(0)=x_{0}
$$

In one solution x_{0} is bigger than 2 ; in one solution x_{0} is equal to 2 ; and in one solution x_{0} is less than 2

We solve $\frac{d x}{d t}=(x-2)^{2}$ by separating the variables and integrating:
On the last page of this solution, we sketched three solutions of the Initial Value Problem

$$
\frac{d x}{d t}=(x-2)^{2} \quad x(0)=x_{0}
$$

In one solution x_{0} is bigger than 2 ; in one solution x_{0} is equal to 2 ; and in one solution x_{0} is less than 2

We solve $\frac{d x}{d t}=(x-2)^{2}$ by separating the variables and integrating:

$$
\begin{aligned}
& \int \frac{d x}{(x-2)^{2}}=\int d t \\
& -(x-2)^{-1}=t+C
\end{aligned}
$$

Set $t=0$ to determine C :

$$
\begin{equation*}
-\frac{1}{x_{0}-2}=C . \tag{10}
\end{equation*}
$$

We continue to write C. We will insert (10) into our answer later.

$$
\begin{aligned}
& \frac{-1}{t+C}=x-2 \\
& 2-\frac{1}{t+C}=x
\end{aligned}
$$

Now insert (10):

$$
2-\frac{1}{t-\frac{1}{x_{0}-2}}=x
$$

Multiply top and bottom by $x_{0}-2$:

$$
2-\frac{x_{0}-2}{\left(x_{0}-2\right) t-1}=x
$$

Check: We plug our proposed answer into $\frac{d x}{d t}-(x-2)^{2}$ and obtain

$$
\frac{(x-2)^{2}}{\left(\left(x_{0}-2\right) t-1\right)^{2}}-\left(-\frac{x_{0}-2}{\left(x_{0}-2\right) t-1}\right)^{2}=0
$$

Our proposed answer is correct.
The pictures are on the next page.

The pictures for problem 7 in section 2.2

A few solutions of $\frac{d x}{d t}=(x-2)^{2} \quad x(0)=x_{0}$

