Problem 5 in Section 2.2. Consider the Differential Equation $\frac{d x}{d t}=x^{2}-4$.

- What are the equilibrium solutions of this autonomous Differential Equation?
- Draw the phase diagram for this Differential Equation.
- Are the equilibrium solutions of this Differential Equation stable or unstable?
- Sketch the solution of the Initial Value problem

$$
\begin{equation*}
\frac{d x}{d t}=x^{2}-4 \quad x(0)=x_{0} \tag{6}
\end{equation*}
$$

for a few choices of x_{0}.

- Solve the Initial Value Problem (6). (Be sure that your answer is in the form x is equal to some function of t.)

We see that $x^{2}-4=(x-2)(x+2)$; thus $x^{2}-4$ is equal to zero when $x=2$ or $x=-2$. We conclude that $x=2$ and $x=-2$ are equilibrium solutions of the given Differential Equation. We see that

- $(x-2)(x+2)$ is positive for $2<x$;
- $(x-2)(x+2)$ is negative for $-2<x<2$; and
- $(x-2)(x+2)$ is positive for $x<-2$.
(The phase diagram is on the last page of this solution.) We conclude that
- if $2<x_{0}$, then the graph of $x=x(t)$ increases away from 2 as t goes to ∞;
- if $-2<x_{0}<2$, then the graph of $x=x(t)$ decreases away from 2 and towards -2 as t goes to ∞; and
- if $x_{0}<-2$, then the graph of $x=x(t)$ increases towards -2 as t goes to ∞.

In other words,
The function $x=2$ is an unstable equilibrium solution of $\frac{d x}{d t}=x^{2}-4$ and the function $x=-2$ is a stable equilibrium solution of $\frac{d x}{d t}=x^{2}-4$.

On the last page of this solution, we sketched five solutions of the Initial Value Problem

$$
\frac{d x}{d t}=x^{2}-4 \quad x(0)=x_{0}
$$

In one solution x_{0} is bigger than 2 ; in one solution x_{0} is equal to 2 ; in one solution x_{0} is between -2 and 2 ; in one solution x_{0} is equal to -2 ; and in one solution x_{0} is less than -2 .

We solve $\frac{d x}{d t}=x^{2}-4$ by separating the variables and integrating:

$$
\begin{equation*}
\int \frac{d x}{x^{2}-4}=\int d t \tag{7}
\end{equation*}
$$

Use the method of partial fractions:

$$
\frac{1}{(x-2)(x+2)}=\frac{A}{x-2}+\frac{B}{x+2} .
$$

Multiply both sides by $(x-2)(x+2)$:

$$
1=A(x+2)+B(x-2)
$$

Plug in $x=2$ to see that $A=\frac{1}{4}$. Plug in $x=-2$ to see that $B=-\frac{1}{4}$. Thus,

$$
\frac{1}{(x-2)(x+2)}=\frac{1}{4}\left(\frac{1}{x-2}-\frac{1}{x+2}\right)
$$

The integral (7) is

$$
\begin{aligned}
& \frac{1}{4} \int\left(\frac{1}{x-2}-\frac{1}{x+2}\right) d x=t+C \\
& \frac{1}{4}(\ln |x-2|-\ln |x+2|)=t+C \\
& (\ln |x-2|-\ln |x+2|)=4 t+4 C
\end{aligned}
$$

Exponentiate:

$$
\begin{aligned}
& \frac{|x-2|}{|x+2|}=e^{4 C} e^{4 t} \\
& \frac{x-2}{x+2}= \pm e^{4 C} e^{4 t}
\end{aligned}
$$

Let K be the constant $\pm e^{4 C}$.

$$
\frac{x-2}{x+2}=K e^{4 t}
$$

Maybe this is a good time to find K. Plug $t=0$ into the most recent equation to learn

$$
\begin{equation*}
\frac{x_{0}-2}{x_{0}+2}=K \tag{8}
\end{equation*}
$$

(We will keep writing K for now. Eventually, we will insert this value for K into our answer.) We want to solve for x. Multiply both sides by $x+2$:

$$
x-2=K e^{4 t}(x+2)
$$

Subtract $K e^{4 t} x$ from both sides and add 2 to both sides:

$$
x-K e^{4 t} x=2 K e^{4 t}+2
$$

Factor an x out pof both terms on the left:

$$
x\left(1-K e^{4 t}\right)=2 K e^{4 t}+2
$$

Divide both sides by $1-K e^{4 t}$

$$
x=\frac{2 K e^{4 t}+2}{1-K e^{4 t}}
$$

Insert (8) into our answer:

$$
x=\frac{2\left(\frac{x_{0}-2}{x_{0}+2}\right) e^{4 t}+2}{1-\left(\frac{x_{0}-2}{x_{0}+2}\right) e^{4 t}} .
$$

Factor a 2 out of both terms in the numerator. Multiply the top and the bottom both by $x_{0}+2$:

$$
x=\frac{2\left(\left(x_{0}-2\right) e^{4 t}+x_{0}+2\right)}{x_{0}+2-\left(x_{0}-2\right) e^{4 t}} .
$$

Check. We plug the proposed answer into $\frac{d x}{d t}-x^{2}+4$. We some the expression ultimately simplifies to become 0 . At any rate, if $x=\frac{2\left(\left(x_{0}-2\right) e^{4 t}+x_{0}+2\right)}{x_{0}+2-\left(x_{0}-2\right) e^{4 t}}$, then

$$
\begin{aligned}
& \frac{d x}{d t}-x^{2}+4 \\
= & \left\{\begin{array}{l}
\left.\frac{2\left(\left(x_{0}-2\right) e^{4 t}+x_{0}+2\right)(-1)\left(-4\left(x_{0}-2\right) e^{4 t}\right)}{\left(x_{0}+2-\left(x_{0}-2\right) e^{4 t}\right)^{2}}+\frac{8\left(x_{0}-2\right) e^{4 t}}{\left(x_{0}+2-\left(x_{0}-2\right) e^{4 t}\right.}\right) \\
-\left(\frac{2\left(\left(x_{0}-2\right) e^{4 t}+x_{0}+2\right)}{x_{0}+2-\left(x_{0}-2\right) e^{4 t}}\right)^{2} \\
+4
\end{array}\right. \\
= & \frac{\left(\begin{array}{l}
+2\left(\left(x_{0}-2\right) e^{4 t}+x_{0}+2\right)(-1)\left(-4\left(x_{0}-2\right) e^{4 t}\right) \\
+\left(8\left(x_{0}-2\right) e^{4 t}\right)\left(x_{0}+2-\left(x_{0}-2\right) e^{4 t}\right) \\
-\left(2\left(\left(x_{0}-2\right) e^{4 t}+x_{0}+2\right)\right)^{2} \\
+4\left(x_{0}+2-\left(x_{0}-2\right) e^{4 t}\right)^{2}
\end{array}\right.}{\left(x_{0}+2-\left(x_{0}-2\right) e^{4 t}\right)^{2}} \\
= & \frac{\left(\begin{array}{l}
+8\left(x_{0}-2\right)^{2} e^{8 t}+8\left(x_{0}+2\right)\left(x_{0}-2\right) e^{4 t} \\
+8\left(x_{0}+2\right)\left(x_{0}-2\right) e^{4 t}-8\left(x_{0}-2\right)^{2} e^{8 t} \\
-4\left(x_{0}-2\right)^{2} e^{8 t}-8\left(x_{0}-2\right)\left(x_{0}+2\right) e^{4 t}-4\left(x_{0}-2\right)^{2} \\
+4\left(x_{0}+2\right)^{2}-8\left(x_{0}+2\right)\left(x_{0}-2\right) e^{4 t}+4\left(x_{0}-2\right)^{2} e^{8 t}
\end{array}\right.}{\left(x_{0}+2-\left(x_{0}-2\right) e^{4 t}\right)^{2}}
\end{aligned}
$$

The numerator adds to zero. Our proposed solution is correct.
The pictures are on the next page.

Pictures for problem 5 in section 2.2
Phase Diagram for $\frac{d x}{d t}=x^{2}-4$

The solution of $\quad \frac{d x}{d t}=x^{2}-4, \quad x(0)=x_{0}$ for a fee w choices of x_{0}

