Problem 3 in Section 2.2. Consider the Differential Equation $\frac{d x}{d t}=x^{2}-4 x$.

- What are the equilibrium solutions of this autonomous Differential Equation?
- Draw the phase diagram for this Differential Equation.
- Are the equilibrium solutions of this Differential Equation stable or unstable?
- Sketch the solution of the Initial Value problem

$$
\begin{equation*}
\frac{d x}{d t}=x^{2}-4 x \quad x(0)=x_{0} \tag{4}
\end{equation*}
$$

for a few choices of x_{0}.

- Solve the Initial Value Problem (4). (Be sure that your answer is in the form x is equal to some function of t.)

We see that $x^{2}-4 x=x(x-4)$ and this expression is equal to 0 when $x=0$ or $x=4$. Thus $x=0$ and $x=4$ are the equilibrium solutions of $\frac{d x}{d t}=x^{2}-4 x$.

We also see that

- if $4<x$, then $x(x-4)$ is positive;
- if $0<x<4$, then $x(x-4)$ is negative; and
- if $x<0$, then $x(x-4)$ is positive.
(We drew a Phase Diagram for the Differential Equation $\frac{d x}{d t}=x^{2}-4 x$ on the last page of this solution.)

In particular,

- if $4<x(0)$, then the graph of $x=x(t)$ increases away from 4 as t goes to infinity;
- if $0<x(0)<4$, then the graph of $x=x(t)$ decreases away from 4 and towards 0 as t goes to infinity; and
- if $x(0)<0$, then the graph of $x=x(t)$ increases toward 0 as t goes to infinity.

So $x=4$ is an unstable equilibrium and $x=0$ is a stable equilibrium for the Differential Equation $\frac{d x}{d t}=x^{2}-4 x$.

On the last page of this solution, we sketched five solutions of the Initial Value Problem

$$
\frac{d x}{d t}=x^{2}-4 x \quad x(0)=x_{0}
$$

In one solution x_{0} is bigger than 4 ; in one solution x_{0} is equal to 4 ; in one solution x_{0} is between 0 and 4 ; in one solution x_{0} is equal to 0 ; and in one solution x_{0} is less than zero.

We solve $\frac{d x}{d t}=x^{2}-4 x$ by separating the variables and integrating:

$$
\begin{equation*}
\int \frac{d x}{x^{2}-4 x}=\int d t \tag{5}
\end{equation*}
$$

Factor the denominator and use the technique of Partial Fractions:

$$
\frac{1}{x^{2}-4 x}=\frac{1}{x(x-4)}=\frac{A}{x}+\frac{B}{x-4} .
$$

Multiply both sides of $\frac{1}{x(x-4)}=\frac{A}{x}+\frac{B}{x-4}$ by $x(x-4)$ to obtain

$$
1=A(x-4)+B x .
$$

Plug in $x=0$ to learn that $A=\frac{-1}{4}$. Plug in $x=4$ to learn that $B=\frac{1}{4}$. It follows that

$$
\frac{1}{4}\left(\frac{1}{x-4}-\frac{1}{x}\right)=\frac{1}{x(x-4)} .
$$

The equation (5) becomes

$$
\begin{gathered}
\frac{1}{4} \int\left(\frac{1}{x-4}-\frac{1}{x}\right) d x=t+C \\
\frac{1}{4}(\ln |x-4|-\ln |x|)=t+C \\
(\ln |x-4|-\ln |x|)=4 t+4 C
\end{gathered}
$$

Exponentiate:

$$
\begin{aligned}
& \left|\frac{x-4}{x}\right|=e^{4 C} e^{4 t} \\
& \frac{x-4}{x}= \pm e^{4 C} e^{4 t}
\end{aligned}
$$

Let K be the constant $\pm e^{4 C}$.

$$
\frac{x-4}{x}=K e^{4 t}
$$

Multiply both sides by x :

$$
x-4=K e^{4 t} x
$$

Subtract $K e^{4 t} x$ from each side and add 4 to each side:

$$
\begin{gathered}
x-K e^{4 t} x=4 \\
x\left(1-K e^{4 t}\right)=4 \\
x=\frac{4}{1-K e^{4 t}}
\end{gathered}
$$

Plug in $t=0$ to find K :

$$
\begin{gathered}
x_{0}=\frac{4}{1-K} \\
1-K=\frac{4}{x_{0}}
\end{gathered}
$$

$$
\begin{gathered}
1-\frac{4}{x_{0}}=K \\
\frac{x_{0}-4}{x_{0}}=K
\end{gathered}
$$

Thus the solution of the Initial Value Problem (4) is

$$
x=\frac{4}{1-\left(\frac{x_{0}-4}{x_{0}}\right) e^{4 t}}
$$

or

$$
x=\frac{4 x_{0}}{x_{0}-\left(x_{0}-4\right) e^{4 t}}
$$

or

$$
x=\frac{4 x_{0}}{x_{0}+\left(4-x_{0}\right) e^{4 t}}
$$

Check. We plug our candidate for x into

$$
\frac{d x}{d t}-x^{2}+4 x
$$

and then clean the thing up. We hope that it simplifies to become zero. When we take the derivative of x, we view x as a constant times u^{-1}, for some function u of t. The derivative of u^{-1} is $-u^{-2} \frac{d u}{d t}$.

At any rate when we plug $x=\frac{4 x_{0}}{x_{0}+\left(4-x_{0}\right) e^{4 t}}$ into

$$
\frac{d x}{d t}-x^{2}+4 x
$$

we obtain

$$
\begin{gathered}
\frac{-4 x_{0}\left(4-x_{0}\right) 4 e^{4 t}}{\left(x_{0}+\left(4-x_{0}\right) e^{4 t}\right)^{2}}-\frac{\left(4 x_{0}\right)^{2}}{\left(x_{0}+\left(4-x_{0}\right) e^{4 t}\right)^{2}}+\frac{16 x_{0}}{x_{0}+\left(4-x_{0}\right) e^{4 t}} \\
=\frac{1}{\left(x_{0}+\left(4-x_{0}\right) e^{4 t}\right)^{2}}\left(-4 x_{0}\left(4-x_{0}\right) 4 e^{4 t}-\left(4 x_{0}\right)^{2}+16 x_{0}\left(x_{0}+\left(4-x_{0}\right) e^{4 t}\right)\right),
\end{gathered}
$$

and this is zero. Our proposed answer is correct.
The pictures are on the next page.

Picture for HW 2.2 number 3
Phase Diagram for $x^{\prime}=x^{2}-4 x$

5 solutions of $\quad x^{\prime}=x^{2}-4 x \quad X(0)=x_{0}$

