Problem 1 in Section 2.2. Consider the Differential Equation $\frac{d x}{d t}=x-4$.

- What are the equilibrium solutions of this autonomous Differential Equation?
- Draw the phase diagram for this Differential Equation.
- Are the equilibrium solutions of this Differential Equation stable or unstable?
- Sketch the solution of the Initial Value problem

$$
\frac{d x}{d t}=x-4 \quad x(0)=x_{0}
$$

for a few choices of x_{0}.

- Solve the Differential Equation. (Be sure that your answer is in the form x is equal to some function of t.)

We see that $x=4$ is the only equilibrium solution of the Differential Equation. We see that $x-4$ is positive if $4<x$ and $x-4$ is negative if $x<4$. (We drew the Phase diagram on the last page of this solution.) We conclude that the equilibrium solution is unstable. That is if $x(0)$ is more than 4 , then $x(t)$ increases away from 4 as t gets large. Also if $x(0)$ is less than 4 , then $x(t)$ decreases away from 4 as t gets large. We drew a picture of $x(t)$ for three choices of $x(0)$ on the next page. We chose one $x(0)$ to be larger than 4 , one to be equal to 4 , and one to be smaller than four.

Now we solve the Differential Equation. Separate the variables and integrate:

$$
\begin{aligned}
\int \frac{d x}{x-4} & =\int d t \\
\ln |x-4| & =t+C
\end{aligned}
$$

Exponentiate:

$$
\begin{aligned}
& |x-4|=e^{C} e^{t} \\
& x-4= \pm e^{C} e^{t}
\end{aligned}
$$

Let K be the constant $\pm e^{C}$.

$$
x-4=K e^{t}
$$

Plug in $t=0$:

$$
x_{0}-4=K
$$

The solution of the Initial Value Problem

$$
\frac{d x}{d t}=x-4 \quad x(0)=x_{0}
$$

is

$$
x=4+\left(x_{0}-4\right) e^{t} .
$$

Check: We see that $x(0)=4+\left(x_{0}-4\right)=x_{0}$. We also see that $x^{\prime}=\left(x_{0}-4\right) e^{t}$. On the other hand, $x-4$ is also equal to $4+\left(x_{0}-4\right) e^{t}-4=\left(x_{0}-4\right) e^{t}$. Thus, our proposed solution does satisfy the Differential Equation.

The pictures are on the next page.

Problem 1 in 2.2

Phase Diagram

A few solutions of $x^{\prime}=x-4 \quad x(0)=x_{0}$

